• Không có kết quả nào được tìm thấy

The weak Lefschetz property for Artinian Gorenstein algebras of codimension three

N/A
N/A
Protected

Academic year: 2022

Chia sẻ "The weak Lefschetz property for Artinian Gorenstein algebras of codimension three"

Copied!
29
0
0

Loading.... (view fulltext now)

Văn bản

(1)

Contents lists available atScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

The weak Lefschetz property for Artinian Gorenstein algebras of codimension three

Rosa M. Miró-Roiga, QuangHoa Tranb,

a UniversitatdeBarcelona,DepartamentdeMatemàtiquesiInformàtica,GranViadelesCorts Catalanes585,08007Barcelona,Spain

bUniversityofEducation,HueUniversity,34LeLoiSt.,HueCity, VietNam

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received30July2019

Receivedinrevisedform4December 2019

Availableonline7January2020 CommunicatedbyS.Iyengar

MSC:

Primary13E10;13H10;secondary 13A30;13C40

Keywords:

Apéryset

ArtinianGorensteinalgebras Hessians

Macaulaydualgenerators Numericalsemigroups WeakLefschetzproperty

We studythe weak Lefschetz propertyof a classof graded Artinian Gorenstein algebras of codimension three associated in a natural way to the Apéry set of a numerical semigroup generatedby four natural numbers.We show that these algebras have the weak Lefschetz property whenever the initial degree of their definingidealissmall.

©2020ElsevierB.V.Allrightsreserved.

1. Introduction

TheweakLefschetzproperty(WLPforshort)foranArtiniangradedalgebraAoverafieldKsimplysays thatthereexistsalinearformLthatinduces,foreachi,amultiplicationmap×L: [A]i−→[A]i+1thathas maximalrank,i.e.thatiseitherinjectiveorsurjective.Atfirstglancethismightseemtobeasimpleproblem of linear algebra. However, determining which graded Artinian K-algebras have the WLP is notoriously difficult. Manyauthors havestudied theproblem from manydifferent points ofview, applyingtools from representationtheory,topology,vectorbundletheory,planepartitions,splines,differentialgeometry,among others(seeforinstance[3,11,13,17,20,21]).TheroleofthecharacteristicofKinthisproblemhasalsobeen animportant,andonlysuperficially understood,aspectof thesestudies.

* Correspondingauthor.

E-mailaddresses:miro@ub.edu(R.M. Miró-Roig),tranquanghoa@hueuni.edu.vn(Q.H. Tran).

https://doi.org/10.1016/j.jpaa.2020.106305 0022-4049/©2020ElsevierB.V.Allrightsreserved.

(2)

One of the most interesting open problems in this field is whetherall codimension 3 graded Artinian Gorenstein algebras have the WLP in characteristic zero. In the special case of codimension 3 complete intersections,apositiveanswerwasobtainedincharacteristiczeroin[14] usingtheGrauert-Mülichtheorem.

For positivecharacteristic, on theother hand,only thecase ofmonomial complete intersections has been studied(see[4,6,7]),applying manydifferent approachesfromcombinatorics.

For thecase of codimension3Gorensteinalgebras thatarenot necessarilycomplete intersections,it is knownthatforeachpossibleHilbertfunctionanexampleexistshavingtheWLP[12].Somepartialresults are givenin[19] toshowthatforcertainHilbertfunctions,allsuchGorenstionalgebras havetheWLP.It was shown in[2] thatall codimension 3Artinian Gorenstein algebras of socle degreeat most6 havethe WLPincharacteristiczero.Butthegeneralcaseremainscompletely open.

In this work, we consider a class of graded Artinian Gorenstein algebras of codimension 3 built up startingfromtheApéry setofanumericalsemigroupgeneratedby4naturalnumbers.Ourgoalistostudy whether these algebras have the WLP. More precisely, we consider a numerical semigroup P generated by {a1,a2,a3,a4} N4 such thatgcd(a1,a2,a3,a4) = 1. TheApéry set Ap(P) of P with respect to the minimal generatorofthesemigroupisdefinedas follows

Ap(P) :={a∈P |a−a1∈/P}={0 =ω1< ω2<· · ·< ωa1}.

Notice that Ap(P) is a finite set and #Ap(P) = a1. Recall that anumerical semigroup P is said to be M-puresymmetric iffor each i = 1,. . . ,a1, ωi+ωa1i+1 =ωa1 and ord(ωi)+ ord(ωa1i+1)= ord(ωa1), where

ord(a) := max{ 4

i=1

λi|a= 4 i=1

λiai}

is the order of a∈ P. Therefore the Apéry set of a M-pure symmetric semigroup hasthe structure of a symmetric lattice.

LetK be afieldofcharacteristiczeroandconsiderthehomomorphism Φ :S:=K[x1, . . . , x4]−→K[P] :=K[ta1, . . . , ta4],

which sends xi −→ tai. Then K[P] = S/Ker(Φ) is a one dimensional ring associated to P. Now set S =S/(x1).ThenthereisonetoonecorrespondencebetweentheelementsofAp(P) andthegeneratorsof S as aK-vectorspace.Letmbe themaximalhomogeneousidealofS,define theassociatedgradedalgebra of theApéry setofP

A= grm(S) :=

i0

mi mi+1.

ItfollowsthatAisastandardgradedArtinianK-algebra.Inthework[5],BryantprovedthatAisGorenstein ifandonlyifP isM-puresymmetric.In[10],Guerrieri showedthatifAisanArtinianGorensteinalgebra thatisnotacomplete intersection,then AisofformA=R/Iwith R=K[x,y,z] and

I= (xa, yb−xαzγ, zc, xa−αyb−β, yb−βzc−γ)⊂R, (1.1) where 1≤α ≤a−1, 1≤β b−1, 1≤γ ≤c−1 and α+γ = b. The integers a,b,c,α,β and γ are determined bythestructureofAp(P),see[10, Section5].

Ourgoalistostudy theWLPforA.Ourmainresultisthefollowing(seeTheorems 3.7and3.15).

(3)

Theorem. Consider the ideal I as in (1.1).If one of the integers a,b and c is less than or equal to three, thenR/I hastheWLP.

2. ArtinianGorensteinalgebras

In this section, we will recall some standard notations and known facts that will be needed later in this work. Wefix K afieldof characteristic zeroand R =K[x1,. . . ,xn] a standard graded homogeneous polynomialringinnvariablesoverK.Let

A=R/I= D

i=0

[A]i

beagradedArtinianalgebra.Note thatAisfinite dimensionaloverK.

Definition 2.1.For any graded Artinian algebra A = R/I = D

i=0[A]i, the Hilbert function of A is the function

hA:N−→N

defined byhA(t)= dimK[A]t. AsA is Artinian, itsHilbert functionis equal to itsh-vector that onecan expressas asequence

hA= (1 =h0, h1, h2, h3, . . . , hD),

withhi =hA(i)>0 andD isthelastindex withthis property.TheintegerD iscalled thesocledegree of A.Theh-vectorhAissaidto besymmetricifhDi=hi foreveryi= 0,1,. . . ,D2 .

Definition 2.2. [16, Proposition 2.1] A standardgraded Artinianalgebra A as aboveis Gorenstein if and onlyifhD= 1 andthemultiplicationmap

[A]i×[A]Di−→[A]D=K isaperfectpairingforalli= 0,1,. . . ,D2 .

Itfollowsthattheh-vector ofagradedArtinianGorensteinissymmetric.

Definition2.3. AgradedArtinianK-algebraAissaidto havetheweakLefschetz property,briefly WLP,if there exists anelement L∈[A]1 suchthatthemultiplication map×L: [A]i −→[A]i+1 hasmaximal rank foreachi.WealsosaythatahomogeneousidealIhastheWLPifR/IhastheWLP.

From now on, we onlyconsider astandard graded Artinian Gorenstein K-algebra. For these algebras, theWLPisdeterminedbyconsideringonlythemultiplication mapinonedegree.

Proposition 2.4. [18,Proposition 2.1] Let A be astandard graded Artinian Gorenstein K-algebra with the socledegree D andk:=D2 .Thenwehave:

(i) If D is odd, A has theWLP if and only if there isan element L [A]1 such that the multiplication map×L: [A]k −→[A]k+1 isanisomorphism.

(4)

(ii) If D iseven, A has the WLPif and only if there is an element L∈[A]1 such that the multiplication map×L: [A]k −→[A]k+1 issurjective orequivalentlythe multiplication map×L: [A]k−1 −→[A]k is injective.

Proposition 2.5.[10, Theorem 2.1] Assume that G=D

i=0[G]i isa standard graded Artinian Gorenstein K-algebra withthesocledegree D thathas theWLP. If∈[G]1 isalinearelement, thenthequotientring

A= G

(0 :G)

isalsoastandardgradedArtinian GorensteinK-algebra.AssumethatGandA havethesamecodimension and setk:=D2 .Then

(i) IfD isodd,thenA has theWLP.

(ii) IfD isevenanddimK[G]k1= dimK[G]k,thenA has theWLP.

Animportanttool neededtostudy whetheraGorensteinalgebrahastheWLPis theMacaulayinverse system, and especiallythe higherHessians. Wegive now somedefinitions andresults takenfrom apaper by Maeno andWatanabe [16] andfrom arecentpaper by Gondimand Zappalá[9]. Thegeneral factson theMacaulay’sinversesystemcanbe seenin[8].

Now weregardR asanR-moduleviatheoperation“”definedby R×R−→R

(xα, xβ)−→xα◦xβ=

xβα if βi≥αi,∀i= 1, . . . , n 0 otherwise

with xα=xα11· · ·xαnn andxβ =xβ11· · ·xβnn. ForapolynomialF∈R,AnnR(F) denotes AnnR(F) :={f ∈R|f ◦F = 0}

which is an ideal of R. It is called the annihilator of F. It is known that R/AnnR(F) is an Artinian Gorenstein algebra. Furthermore, every Artinian Gorenstein algebra can be written in this form. More precisely, wehavethefollowing.

Proposition 2.6. [16,Theorem 2.1] LetI be an idealof R andA=R/I thequotientalgebra. Denote by m thehomogeneousmaximal idealofR.Then√

I=mandtheK-algebraAisGorenstein ifandonlyif there exists apolynomialF ∈R suchthat I= AnnR(F).

The polynomialF intheaboveproposition iscalled theMacaulay dual generator of A=R/AnnR(F).

Furthermore,ifF isahomogeneouspolynomialofdegreeD,thenR/AnnR(F) isagradedArtinianGoren- steinalgebraofsocledegreeD.

Definition 2.7. LetF be apolynomialin R and d,k 1 betwo integers. AssumethatBd =i}si=1 and Bk =j}t=1formrespectivelytheK-linearbasisof[A]dand[A]k.Wedefine themixedHessianofF asan (s×t)-matrix

Hessd,kB

d,Bk(F) := ( (αi·βj)◦F).

Inparticular, ifd=k, thenwedefinethed-thHessianofF asasquarematrix

(5)

HessdBd(F) := ( (αi·αj)◦F).

Noticethatthesingularity ofthese matricesis independentofthechosen basisandhencewe canwrite simplyHessd(F) andHessd,k(F).Basedonthesingularityof(mixed)HessiansofF,wecandeterminethe WLPofA=R/AnnR(F).

Proposition2.8. [9] Assume thatA=R/AnnR(F)with F [R]D andk:=D2 .Thenwehave:

(i) If D isodd, then A has the WLP if and only if the Hessian Hessk(F) has maximal rank, i.e., it has nonzerodeterminant.

(ii) If D iseven,then Ahas theWLPif andonlyif themixedHessianHessk1,k(F) hasmaximal rank.

WeclosethissectionbyrecallingaresultontheWLPofcodimension3ArtinianGorenstein algebras.

Proposition 2.9. [2,Corollary 3.12] Incharacteristic zero, allcodimension3 Artinian Gorenstein algebras of socledegreeat most6have theWLP.

3. TheWLPforclassofArtinianGorenstein algebrasof codimension3

Fromnow on,letR=K[x,y,z] bethestandardgradedpolynomialringoverafieldK ofcharacteristic zeroandconsidertheideal

I= (xa, yb−xαzγ, zc, xaαybβ, ybβzcγ)⊂R, (3.1) where1≤α≤a−1, 1≤β ≤b−1 and1≤γ≤c−1 suchthatα+γ=b.Itisclearthatb≤a+c−2 and bysymmetryofxandz, withoutloss ofgenerality,weassumethata≥c.First,wehavethefollowing.

Proposition3.1. Fix a,b,c,α,β,γ asabove.Set a= (xa,yb−xαzγ,zc).Thenonehas:

(i) I=a: Ryβ.Therefore, R/I is an Artinian Gorenstein of codimension 3and thesocle degree of R/I isD=a+b+c−β−3.

(ii) TheMacaulay dualgenerator of R/I is

F = m i=0

xa−1−iαy(i+1)b−1−βzc−1−iγ,

wherem:= max{j|a−1−jα≥0andc−1−jγ≥0}. (iii) Thefree resolutionof R/I is

0−→R(abc+β)

R(−ab+β) R(−ac+β)

R(bc+β)

R(−aγ) R(−cα)

M

R(−a) R(−b)

R(c) R(−aγ+β) R(−cα+β)

R R/I−→0,

whereM isaskew-symmetricmatrix

(6)

M =

⎢⎢

⎢⎣

0 yb−β 0 −xα 0

−ybβ 0 zγ 0 0

0 −zγ 0 yβ −xa−α

xα 0 −yβ 0 zcγ 0 0 xaα −zcγ 0

⎥⎥

⎥⎦.

Proof. Firstly,sinceaisacompleteintersection,I=a:yβ isGorenstein.Thisproves(i).Itisknownthat R/AnnR(F) is anArtinianGorenstein algebraof socle degreea+b+c−β−3. SinceI AnnR(F) and R/I isanArtinianGorensteinalgebra,by[15,Lemma1.1],I= AnnR(F).Theitem(ii)isproved.Finally, (iii) isimplied fromthestructure theoremof Gorensteinidealsofcodimension3andalsofrom astandard mappingconecomputation. 2

Oneoftheinterestingopen problemsis whetherallcodimension3graded ArtinianGorenstein algebras havetheWLPincharacteristiczero.Now letIbe anidealasin(3.1).Bytheaboveproposition,R/I isa gradedArtinianGorensteinalgebraofcodimension3,henceweareinterestedinstudyingtheWLPforR/I.

In the nextsubsections,we will provethat R/I hasthe WLP wheneverthe initial degreeof I is at most three.Inthepaper,wedenotebyId theidentitymatrixandbyMtthetranspose matrixofamatrixM.

3.1. Theideal I containsaquadric

Inthissubsection,weconsider thesimplestcasewheretheidealI containsaquadric.

Thefirstcaseisb= 2,henceα=β =γ= 1.Weobtainthefollowing result.

Proposition 3.2. LetI betheideal

I= (xa, y2−xz, zc, xa1y, yzc1)⊂R with a≥c≥2.ThenR/I has theWLP.

Proof. The socle degree of R/I is D = a+c 2. Set k := D2 = a+c22 . Set L = x−y+z. By Proposition2.4, itisenoughto showthat

×L: [R/I]k −→[R/I]k+1

is surjective,orequivalently [R/(I,L)]k+1= 0. Wehavethat R/(I, L)∼=K[x, z]/J,

where J = (xa,x2+xz+z2,zc,xa1z,xzc1). We will prove that [K[x,z]/J]k+1 = 0, or equivalently xizk+1−i ∈J forall0≤i≤k+ 1.Wedoit byinductiononi.As a≥c, hencec≤k+ 1.It followsthat zk+1 andxzk belongto J. Foranyi≥2,onehas

xizk+1i=x2xi2zk+1i =(z2+xz)xi2zk+1i=−xi2zk+3i−xi1zk+2i∈J, bytheinductionhypothesis. 2

We now study thecase a = 2 or c = 2. Bysymmetry of x and z, WLOG, we canassume a≥ c = 2.

Therefore γ= 1 anda≥α+ 1=b.Moreprecisely,weconsidertheideal Iβ= (xa, yb−xb1z, z2, xab+1ybβ, ybβz)⊂R,

(7)

with1≤β≤b−1 anda≥b.SetAβ=R/Iβ.ByProposition3.1, thefreeresolution ofAβ is

0 R(−ab2 +β)

R(a2 +β)

R(b2 +β) R(−ab+β) R(−a1)

R(b1)

R(2)

R(a) R(−b) R(−a1 +β)

R(b1 +β)

R Aβ 0 . (3.2)

Sincewehavethefreeresolution(3.2) ofAβ,forany integerj≥2,weget HAβ(j) =2j+ 1

j−a+ 1 1

j−b+ 1 1

j−a+β 1

j−b+β 1

(3.3) +

j−a−b+β+ 1 1

+

j−a−b+β 1

,

with convention n

m

= 0 if n < m. ByProposition3.1, thesocle degree ofAβ isD =a+b−β−1. Set k:=D2 .Thenk−a<0 andk−a−b+β <0,itfollowsfrom(3.3) that

HAβ(k) = 2k+ 1

k−b+ 1 1

k−a+β 1

k−b+β 1

. (3.4)

TheHilbertfunctionofAβ indegreekisdetermined asfollows.

Lemma3.3. Forevery 1≤β ≤b−1,onehas HAβ(k) =

2b−β if β ≤a−b a+b−2β+ 1 if β ≥a−b+ 1.

Furthermore,if 1≤β ≤a−b−1,then

HAβ(k) =HAβ(k1).

Proof. Firstly,weconsiderthecasewherea+b−β iseven.Hencek=a+b−β2 1.Itfollowsfrom(3.4) that HAβ(k) =a+b−β−1

a−b−β

2

1

a−b+β

2 1

1

b−a+β

2 1

1

.

Sincea≥b≥β+ 12.Weconsider thefollowingcases.

Case 1:a=b.Inthiscase,β hasto beevenanditiseasyto showthat HAβ(k) =a+b−2β+ 1.

Case 2:a=b+ 1.Inthiscase,β mustbe odd.Therefore HAβ(k) =a+b−β−1

β+1 2 1

1

β1

2 1 1

=

2b−β if β = 1 a+b−2β+ 1 if β 3.

(8)

Case 3:a=b+ 2. Inthis case,β mustbeeven, henceβ 2.It followsthat HAβ(k) =a+b−β−1

β+2

2 1 1

β−2

2 1 1

=

2b−β if β= 2 a+b−2β+ 1 if β≥4.

Case 4:a≥b+ 3. Thena−b+β≥4.Therefore,ifβ≥a−b+ 4,then HAβ(k) =a+b−β−1−a−b+β

2 + 1−b−a+β

2 + 1

=a+b−2β+ 1.

If β≤a−b−2,then

HAβ(k) =a+b−β−1−a−b−β

2 −a−b+β

2 + 1

= 2b−β.

Thusweonlyconsiderthecaseβ=a−b+i, 1≤i≤3.Buta+b−β iseven,thereforeboth βanda−b are eitherevenor odd.Itfollows thatwe onlyconsider thetwocaseswhere β=a−b+ 2 orβ =a−b. If β =a−b+ 2,then astraightforwardcomputationshowsthat

HAβ(k) =a+b−2β+ 1.

Similarly,ifβ=a−b then

HAβ(k) = 3b−a= 2b−β.

Thuswe concludethat

HAβ(k) =

2b−β if β ≤a−b a+b−2β+ 1 if β ≥a−b+ 2 as desired.

Secondly,weconsider thecasewhere a+b−β isodd.Hencek= a+b2β1. Itfollowsfrom (3.4) that HAβ(k) =a+b−β−

a−b−β+1

2

1

a−b+β−1

2

1

b−a+β−1

2

1

.

Since a≥b≥β+ 12.Weconsiderthefollowing caseswhere a=b, a=b+ 1 ora≥b+ 2.Theproofis similar asabove(evenmoresimple).

Finally,if1≤β≤a−b−1,then

HAβ(k) = 2b−β.

Notice thatk−a+β <0 sincea−b≥β+ 1.It followsfrom(3.3) that HAβ(k1) = 2k1

k−b 1

k−b+β−1 1

.

(9)

Ifa+b+β isodd,then

HAβ(k1) =a+b−β−2

abβ1 2

1

ab+β1

2 1

1

=

⎧⎪

⎪⎨

⎪⎪

2b−β if a−b=β+ 1 2b−β if a−b=β+ 3 2b−β if a−b≥β+ 5

= 2b−β.

Ifa+b+β iseven, then

HAβ(k1) =a+b−β−3

abβ

2 1

1

ab+β

2 2

1

=

2b−β if a−b=β+ 2 2b−β if a−b≥β+ 4

= 2b−β.

Thusthelemmaiscompletely proved. 2

Lemma3.4. Set G=R/(xa,yb−xb−1z,z2)andk=a+b21 .Ifa≥b,then

HG(k) =

2b if a≥b+ 1 2b1 if a=b.

Furthermore,if a≥b+ 3,then

HG(k) =HG(k1).

Proof. Since GisresolvedbytheKoszulcomplexandk−a<0,wehave HG(k) =

k+ 2 2

k

2

k−b+ 2 2

k−b

2

= 2k+ 1

k−b+ 1 1

k−b

1

.

Ifa+b isodd,thenk= a+b−12 .Asimplecomputationshowsthat

HG(k) =

a+b−a2b11a2b1 if a−b≥3

a+b−1 if a−b= 1

= 2b.

Ifa+b iseven,thenk=a+b2 1.Itfollows that

HG(k) =

⎧⎪

⎪⎨

⎪⎪

a+b−1a2ba2b+ 1 if a−b≥4 a+b−11 if a−b= 2

a+b−1 if a=b

(10)

=

2b if a−b≥2 2b1 if a=b.

Analogously wecancheck that

HG(k1) = 2k1 k−b

1

k−b−1 1

=

⎧⎪

⎪⎨

⎪⎪

2b if a−b≥3 2b1 if 1≤a−b≤2 2b3 if a=b.

Thus, ifa−b≥3,thenHG(k)=HG(k1). 2 Proposition 3.5. Assumeb≤a≤2b3.Thentheideal

Iβ= (xa, yb−xb−1z, z2, xa−b+1yb−β, yb−βz)⊂R has theWLP, whenevera−b+ 2≤β≤b−1.

Proof. SetAβ=R/Iβ.ByProposition3.1,onehas Aβ= Aβ1

(0 :Aβ−1y),

forall2≤β≤b−1.Notice thatthesocledegreeofAβ isD=a+b−β−1.Henceifβ=a−b+ 2,then D= 2b3 isodd.ToprovethatAβ hastheWLPforeverya−b+ 2≤β≤b−1,byProposition2.5(i),it is enoughto provethatAβ hastheWLPwheneverD isodd.

Now letβ be aninteger such thata−b+ 2 ≤β b−1 anda+b−β is even. In this case, onehas k= a+b2β1.Itfollows fromLemma3.3that

HAβ(k) =a+b−2β+ 1.

Clearly, sinceβ≥a−b+ 2,k < b≤a.Therefore, wecantakeaK-linearbasisB=B1 B2 B3 of[Aβ]k with

B1={ui=xk+1−iyi−1|i= 1,2, . . . , b−β} B2={vi =xi1yk+1i |i= 1,2, . . . , a−b+ 1} B3={wi=xkiyi1z|i= 1,2, . . . , b−β}. Ontheother hand,theMacaulaydualgeneratorofAβis

F =xa−1yb−β−1z+xa−by2b−β−1.

Toprovetheproposition,byProposition2.8,itisenoughtoshowthatHesskB(F) hasnonzerodeterminant.

Write

(11)

HesskB(F) =

⎢⎢

⎢⎢

⎢⎢

A ... B ... C

· · · · Bt ... U ... V

· · · · Ct ... Vt ... W

⎥⎥

⎥⎥

⎥⎥

,

where A= ( (ui·uj)◦F),B = ( (ui·vj)◦F),C = ( (ui·wj)◦F),U = ( (vi·vj)◦F),V = ( (vi·wj)◦F) andW = ( (wi·wj)◦F).

Notice thatA,C,U and W are thesquare matrices. It follows that thediagonal of HesskB(F) from the toprightto thebottomleftcornerisequalto thediagonalsofC,U and Ct.Wewillshow thattheentries onthisdiagonalarenonzeroandtheentriesunderthislinearezero.

Indeed,astraightforwardcomputationshowsthatthematrixU = (ui,j) isasquarematrixofsizea−b+1 with

ui,j= (vi·vj)◦F = (xi+j−2y2k+2−i−j)◦F

=

y if i+j=a−b+ 2 0 if i+j≥a−b+ 3

sincei+j−22a2b2a(a+ 3)=a−3.Similarly,thematrixC= (ci,j) isasquarematrixofsize b−β with

ci,j= (ui·wj)◦F =

(x2k−b+βyb−β−1z)◦F if i+j =b−β+ 1 (x2k+1−i−jyi+j−2z)◦F if i+j ≥b−β+ 2

=

x if i+j=b−β+ 1 0 if i+j≥b−β+ 2.

ItiseasytoseethatW = ( (wi·wj)◦F) = 0 becausewi·wj containsz2.Finally,V = (vi,j) isamatrix ofsize (a−b+ 1)×(b−β) with

vi,j= (vi·wj)◦F = (xi−1yk+1−i·xk−jyj−1z)◦F

= (xk+ij1yki+jz)◦F.

Noticethatk > b−β−1.Henceifi≤j,thenk−i+j > b−β−1.Thus(vi·wj)◦F = 0.Ifi> j,thenput :=i−j,hence1≤≤a−b≤β−2.Inthiscase,wewill seethatk−i+j > b−β−1.Indeed,onehas

k−i+j > b−β−12k2 >2b2, wherethelast inequalityfollows fromthefactthat

2k2≥a+b−β−2(a−b)−2)2b2β.

Thus,wesee thatV = 0.

(12)

WethusconcludethattheHessianofF is

HesskB(F) =

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

∗ · · · ∗ ∗ · · · ∗ ∗ · · · x ... · · · ... ... · · · ... ... · · · ...

∗ · · · ∗ ∗ · · · ∗ x · · · 0

∗ · · · ∗ ∗ · · · y 0 · · · 0 ... · · · ... ... · · · ... ... · · · ...

∗ · · · ∗ y · · · 0 0 · · · 0

∗ · · · x 0 · · · 0 0 · · · 0 ... · · · ... ... · · · ... ... · · · ... x · · · 0 0 · · · 0 0 · · · 0

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

whichhasnonzerodeterminant. 2

Proposition 3.6. Assumea≥b≥2.Thentheideal

Iβ= (xa, yb−xb1z, z2, xab+1ybβ, ybβz)⊂R has theWLP, whenever1≤β≤min{a−b+ 1,b−1}.

Proof. SetAβ=R/Iβ andG=R/(xa,yb−xb−1z,z2).ByProposition3.1,onehas A1= G

(0 :Gy) and Aβ= Aβ−1 (0 :Aβ−1y),

forall2≤β≤b−1.Noticethatifβ =a−b≤b−1,thenthesocledegreeofAβ isodd.ByProposition2.5 andLemma3.3, itisenoughto showthatA1hastheWLP.Weconsiderthefollowingcases:

Case 1:a+b is even.ThenthesocledegreeofGisa+b−1 whichisodd.SinceGisanArtiniancomplete intersection algebra of codimension3, by [14, Corollary 2.4],G has theWLP. It follows thatA1 has the WLPbyProposition2.5(i).

Case 2:a+b is odd.If a≥b+ 3, thenA1 hastheWLPby Proposition2.5(ii) andLemma3.4. It follows thattheremaincaseiswherea=b+ 1.Moreprecisely, wehaveto showthattheideal

I= (xa, ya−1−xa−2z, z2, x2ya−2, ya−2z)

hastheWLP.ThesocledegreeofR/I is2a3,hencek=a−2.ByLemma3.3, onehas HR/I(a2) = 2a3.

Therefore, wecansee thataK-linearbasisof[R/I]a−2 isB=B1 B2,where B1={ui =xa−1−iyi−1|i= 1,2, . . . , a1} B2={ua+i=xa−3−iyiz|i= 0,1, . . . , a3}. Ontheother hand,theMacaulaydualgeneratorofR/I is

F =xa1ya3z+xy2a4.

To provethat R/I hasthe WLP, by Proposition 2.8, it is enough to show thatHessa−2B (F) has nonzero determinant.Write

(13)

Hessa−2B (F) = [Mi,j], whereMi,j= ( (ui·uj)◦F) forall1≤i,j≤2a3.

NoticethatM isasquare matrixofsize 2a3.First,wehave ai,2a−2−i= (ui·u2a−2−i)◦F

=

⎧⎪

⎪⎨

⎪⎪

(xa2ya3z)◦F if 1≤i≤a−2 (y2a−4)◦F if i=a−1 (xa−2ya−3z)◦F if a≤i≤2a3

=x.

Nowweassumethati+j≥2a1.If1≤i≤a−1 thenj≥a,hence ai,j= (ui·uj)◦F

= (x3a−i−j−4yi+j−a−1z)◦F

= 0

sincei+j−a−1≥a−2.BythesymmetryofMi,j,weonlyconsiderthecasewherei,j≥a.Inthiscase, wehaveai,j= 0 becauseui·uj containsz2.

Insummary,theHessianofF is

HesskB(F) =

⎢⎢

⎢⎢

∗ ∗ · · · ∗ x

∗ ∗ · · · x 0 ... ... · · · ... ...

x · · · 0 0 x 0 · · · 0 0

⎥⎥

⎥⎥

whichhasnonzerodeterminant. 2 Wenowstateourfirstmainresult.

Theorem3.7. Consider theideal I asin (3.1).If one ofthe integers a,b andc isequalto2, then R/I has theWLP.

Proof. Thetheoremwasprovedforthecaseb= 2 inProposition3.2.Bythesymmetryofxandz,wecan always assume thata ≥c. Now ifc = 2,then it follows from Propositions 3.5 and 3.6 thatR/I has the WLP. 2

3.2. The idealI contains acubic

Inthissubsection,weconsiderthecasewheretheidealI containsacubic.

Thefirstcaseweconsiderisb= 3.Denote

Iβ = (xa, y3−xαz3−α, zc, xa−αy3−β, y3−βzc+α−3)⊂R,

with a≥cand 1≤α,β 2 suchthatc+α≥4.Thesocle degreeofR/Iβ isD =a+c−β andthe free resolutionofR/Iβ is

(14)

0 R(−ac3 +β)

R(−ac+β) R(−a3 +β)

R(c3 +β)

R(a3 +α)

R(−cα)

R(−3) R(−a)

R(c)

R(a3 +α+β)

R(−cα+β)

R R/Iβ−→0 . (3.5)

Lemma 3.8.Set G=R/(xa,y3−xαz3α,zc)and k=a+c2 .If a≥c≥2,then

HG(k) =

⎧⎪

⎪⎨

⎪⎪

3c2 if a=c 3c1 if a=c+ 1 3c if a≥c+ 2.

Furthermore, ifa≥c+ 4,then

HG(k) =HG(k1).

Proof. SinceGisresolvedbytheKoszulcomplexandk−a≤0,weget HG(k) =

k+ 2 2

k−1

2

k−a+ 2 2

k−c+ 2 2

+

k−c−1 2

= 3k

k−a+ 2 2

k−c+ 2 2

+

k−c−1 2

.

If a+cisodd,thenk=a+c21.Itfollowsthat

HG(k) =

3c1 if a=c+ 1 3c if a≥c+ 3.

If a+ciseven, thenk= a+c2 .Therefore

HG(k) =

3c2 if a=c 3c if a≥c+ 2.

Analogously wecancheck that

HG(k1) = 3(k1)

k−c+ 1 2

+

k−c−2 2

=

⎧⎪

⎪⎨

⎪⎪

3c3 if a=cora=c+ 1 3c1 if a=c+ 2 ora=c+ 3 3c if a≥c+ 4.

Thus, ifa≥c+ 4,thenHG(k)=HG(k1). 2

Lemma 3.9.Assume β= 1 andk=a+c21 .Ifa≥c,then

HR/I1(k) =

3c3 if a=c 3c3 +α if a≥c+ 1.

(15)

Furthermore,if a≥c+ 3,then

HR/I1(k) =HR/I1(k1).

Proof. As k−a<0 andc≥γ+ 12,itfollows from(3.5) withβ= 1 that HR/I1(k) = 3k

k−c+ 1 1

k−c

1

k−c−α+ 2 1

.

Byconsideringthecaseswherea=c+j foreachj ∈ {0,1,. . . ,4}or a≥c+ 5,itiseasytosee that

HR/I1(k) =

3c3 if a=c 3c3 +α if a≥c+ 1.

Astraightforwardcomputationsalso showsthat

HR/I1(k1) =

⎧⎪

⎪⎨

⎪⎪

3c6 if a=c

3c3 if a=c+ 1 ora=c+ 2 3c3 +α if a≥c+ 3.

Thusifa≥c+ 3 thenHR/I1(k)=HR/I1(k1). 2

Thefollowing is useful to provethenext results.Recall thatthe determinantof blockmatrices canbe computedasfollows:supposeA,B,CandDarematricesofsizen×n,n×m,m×n,andm×m,respectively.

Then

det

⎢⎢

A ... B

· · · · C ... D

⎥⎥

⎦=

det(A) det(D−CA1B) ifAis invertible

det(D) det(A−BD−1C) ifDis invertible. (3.6) Proposition3.10. Considertheideal

Iβ = (xa, y3−xαz3−α, zc, xa−αy3−β, y3−βzc+α−3), with a≥cand 1≤α,β 2suchthatc+α≥4.ThenR/Iβ has theWLP.

Proof. Recall that G=R/(xa,y3−xαz3α,zc) isa complete intersectionof codimension3, henceit has theWLP.Weconsiderthefollowingtwo cases:

Case 1:a+c is odd. In this case, the socle degree of G is odd. Hence, R/I1 has the WLP by Proposi- tions2.5(i)and3.1. Nowifa≥c+ 3,thenR/I2 alsohastheWLPbyLemma3.9andProposition2.5(ii).

Thus,weonlyneedto provethat

I2= (xa, y3−xαz3α, za1, xaαy, yza+α4) hastheWLP.Inthis case,onehasD= 2a3 andk=a−2.

Subcase 1:α= 1.SetL=x−y+z.ByProposition2.4,itsufficestoshowthat

×L: [R/I2]a−2−→[R/I2]a−1

(16)

is anisomorphism,or equivalently[R/(I2,L)]a−1= 0. Wehave R/(I2, L)∼=K[x, z]/J,

where J = (xa,x3+ 3x2z+ 2xz2+z3,za−1,xa−1z,xza−3+za−2).Wewill provethat[K[x,z]/J]a−1 = 0, or equivalent xiza1i ∈J forall0≤i ≤a−1.We doitby inductiononi. Wefirst see thatxza2 and x2za3∈J sinceza1,xza3+za2∈J.Forany i≥3,onehas

xiza−1−i=x3xi−3za−1−i=(z3+ 2xz2+ 3x2z)xi−3za−1−i

=−xi−3za+2−i3xi−2za+1−i3xi−1za−i∈J, bytheinductionhypothesis.

Subcase 2:α= 2.Inthiscase,

I2= (xa, y3−x2z, za−1, xa−2y, yza−2).

It followsfrom(3.5) that

HR/I2(a2) =HR/I2(a1) = a

2

a−3

2

= 3a6.

A K-linearbasisof[R/I2]a−2 isB=B1 B2 B3,where

B1={ui=xa1izi1|i= 1,2, . . . , a1} B2={vi=xa2iyzi1|i= 1,2, . . . , a2} B3={wi =xa−3−iy2zi−1|i= 1,2, . . . , a3} and aK-linearbasisof[R/I2]a−1 isB =B1 B2 B3,where

B1 ={ui=xa−izi−1|i= 1,2, . . . , a1} B2 ={vi=xa−2−iy2zi−1|i= 1,2, . . . , a2} B3 ={wi=xa−2−iyzi |i= 1,2, . . . , a3}. SetL=x+y+z.ByProposition2.4,itisenoughtoshowthat

×L: [R/I2]a2−→[R/I2]a1

is an isomorphism, or equivalently the matrix representation M of ×L with respect to these bases has nonzerodeterminant.Itis easytoseethat

×L(ui) =xa−izi−1+xa−1−izi+xa−1−iyzi−1

×L(vi) =xa1iyzi1+xa2iyzi+xa2iy2zi1

×L(wi) =xa−1−izi+xa−2−iy2zi−1+xa−3−iy2zi sincey3=x2z inR/I2.Itfollowsthat

Tài liệu tham khảo

Tài liệu liên quan

The index evaluating the extent of growth, with concern for the growth experienced by the initially disadvantaged types, is positive for the first period and negative for the

Eating, breathing in, or touching contaminated soil, as well as eating plants or animals that have piled up soil contaminants can badly affect the health of humans and animals.. Air

Eating, breathing in, or touching contaminated soil, as well as eating plants or animals that have piled up soil contaminants can badly affect the health of humans and animals.. Air

Students mustn’t wear white shirts and dark blue pants in school F____.. Jeans and T- shirt

Bãi chôn lấp bao gồm các ô chôn lấp chất thải, vùng đệm, các công trình phụ trợ như trạm xử lý nước, trạm xử lý khí thải, trạm cung cấp điện nước, văn phòng làm việc

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct word or phrase that best fits each of the numbered blanks.. The story of

Hình 3.. Số liệu tái phân tích/phân tích CFS được sử dụng làm điều kiện ban đầu và điều kiện biên xung quanh cho các mô hình. XTNĐ của các trường hợp mô phỏng được dò

Ngoài ra, bảng hỏi cũng có các câu hỏi tìm hiểu khó khăn mà giảng viên của trường hiện đang gặp phải trong quá trình DHTT thời gian vừa qua, cũng như đánh