Đề thi học kì 1 – khối 11 Đề số 1
Thời gian: 90 phút
Câu 1: Phương trình: có các nghiệm là
A. B.
C. D.
Lời giải
Ta thấy cosx = 0 không thỏa mãn phương trình đã cho chia cả 2 vế của phương trình cho , ta được:
2 2 2
2 tan tan 1 tan 1 tan tan 2 0
tan 1 tan 2 4
arctan 2
x x x x x
x k
x
x x k
Chọn B.
Câu 2: Số nghiệm của phương trình trong khoảng là
A. 5 B. 7 C. 4 D. 6
Lời giải Ta có:
3 1 2
sin 3 cos 3
2 2 2
2 2
os .sin 3 sin . os 3x = sin 3
6 6 2 6 2
x x
c x c x
2 2
2sin xsin .cosx xcos x1
arctan 1 ;
2 2
x k x k k
; arctan
2
x 4 k x k k
arctan 2 ;
x k x 4 k k arctan 2 ;
x k x 3 k k
cos2x
3 sin 3xcos3x 2
;
3 sin 3xcos3x 2
3 2
6 4 36 3
3 7 ,
3 2
6 4 36 3
x k x
k
x k x
nên Chọn A.
Câu 3: Phương trình tương đương với phương trình
A. B.
C. D.
Lời giải
Phương trình đã cho
Chọn A.
Câu 4. Cho đa giác đều n đỉnh, n N và n 3. Tìm n biết rằng đa giác đã cho có 135 đường chéo.
A. n = 15 B. n = 27 C. n = 8 D. n = 18 Lời giải.
Đa giác lồi n đỉnh thì có n cạnh. Nếu vẽ tất cả các đoạn thẳng nối từng cặp trong n đỉnh này thì có một bộ gồm các cạnh và các đường chéo.
Vậy để tính số đường chéo thì lấy tổng số đoạn thẳng dựng được trừ đi số cạnh, với
Tất cả đoạn thẳng dựng được là bằng cách lấy ra 2 điểm bất kỳ trong n điểm, tức là số đoạn thẳng chính là số tổ hợp chập 2 của n phần tử.
Như vậy, tổng số đoạn thẳng là Cn2
Số cạnh của đa giác lồi là n
Suy ra số đường chéo của đa giác đều n đỉnh là 2 ( 3) 2
n
C n n n
23 25 17 31
; ; ; ;
36 36 36 36 36
x
2 2 2 2
cos xcos 2xcos 3xcos 4x2
cos .cos 2 .cos5x x x0 sin .sin 2 .sin 4x x x0 sin .sin 2 .sin 5x x x0 cos .cos 2 .cos 4x x x0
2cos2x 1
2cos 22 x 1
2cos 32 x 1
2cos 42 x 1
0
cos 2x cos 4x cos6x cos8x 0 2cos3 cosx x 2cos7 cosx x 0
cosx cos3x cos7x 0 cos .2cos5 cos 2x x x 0 cos cos5 cos 2x x x 0
Theo bài ra, ta có ( 3) 135 2
n n
( )
2 3 270 18 3
n n n vi n
Chọn D.
Câu 5: Phương trình nào sau đây vô nghiệm
A. B. C. D.
Lời giải
Các phương trình ở các đáp án A, C và D có nghiệm.
Xét phương trình:
Vì nên phương trình vô nghiệm Chọn B.
Câu 6: Cho đường tròn . Ảnh của đường tròn qua phép ĐO là đường tròn có phương trình nào dưới đây?
A. B.
C. D.
Lời giải
Đường tròn có tâm và bán kính .
Gọi là ảnh của qua phép tâm và bán kính R’ = R = 3 .
Khi đó
Chọn B.
Câu 7: Gieo một con xúc sắc cân đối đồng chất hai lần. Tính xác suất sao cho tổng số chấm của hai lần gieo là số lẻ
sin 2
x 3 2sinx3cosx4 tanx2017 1 sin 2
x3
2sinx3cosx4
22 2
4 2 3
C : x2
2 y1
2 9
C
x1
2 y2
2 9
x2
2 y1
2 9
x2
2 y1
2 9
x2
2 y1
2 9
C I
2;1
R3
0 ' 2; 1
D I I
C'
C D0
C' I' 2; 1
C' : x2
2 y1
2 9A. B. C. D.
Lời giải
Số phần tử của không gian mẫu là: (phần tử) Để tổng số chấm lẻ thì số cách chọn là: (cách)
Xác suất để tổng số chấm của hai lần gieo là số lẻ là:
Chọn A.
Câu 8: Tập nghiệm của phương trình
A. B. C. D.
Lời giải
Điều kiện: 4x2 0 2 x 2 (*)
Với điều kiện (*) phương trình đã cho
2 2
2 2
3 0 3 3
0
4 0 4
4
x x x
x
x x x x
x x
3
0 3 3; 2
2 2
x x
x S
x x
Chọn D.
Câu 9: Điều kiện xác định của hàm số là
A. B. C. D.
Lời giải
Điều kiện: sinxcosx0 1
2
P 3
P5 3
P 7 5
P 9
6.6 36n 6.3 18
18 1 36 2 P
x3 4x2 x
0
2; 2;3
S S
2; 2
S
2 S
3; 21 sin cos
y x x
2 ,
x k k xk2 , k ,
x4 k k xk,k
2 sin 0
4 4
4 ,
x x k
x k k
Chọn C.
Câu 10: Trong các khẳng định sau, khẳng định nào sai
A.
B.
C.
D.
Lời giải Chọn B.
Câu 11: Tập xác định của hàm số là
A. B.
C. D.
Lời giải
Điều kiện sin 0
3 3 3
x x k x k
TXĐ: \ ;
D 3 k k
Chọn B.
Câu 12: Giải phương trình
sin sin 2
2
x k
x k
x k
cos cos 2
2
x k
x k
x k
tanxtan x k k
cos cos 2
2
x k
x k
x k
cot 3
y x
\ 2 ;
3 k k
\ ;
3 k k
\ 2 ;
6 k k
\ ;
6 k k
4 4
4 sin xcos x 3 sin 4x2
A. B.
C. D.
Lời giải
Phương trình đã cho 4 sin
2xcos2x
22sin2xcos2x 3 sin 4x2sin 22 3 1 1
4 1 3 sin 4 2 3 sin 4 cos 4 1 sin 4 cos 4
2 2 2 2
x x x x x x
4 2
1 6 6 12 2
sin 4 ,
7
6 2
4 2
6 6 4 2
x k x k
x k
x k x k
Chọn B.
Câu 13: Lớp 11A7 có 18 nam và 24 nữ. Chọn ngẫu nhiên hai học sinh để hát song ca. Xác suất để trong đó có ít nhất một nam là?
A. B. C. D.
Lời giải
Số cách chọn ngẫu nhiên 2 học sinh là: C422 861 (Cách)
Số cách chọn 2 học sinh để có ít nhất 1 nam là: 18.24C182 585 (Cách) Xác suất để có ít nhất 1 nam là: 585 195
861 287 Chọn B.
Câu 14: Giá trị nhỏ nhất của là
A. 1 B. 7 C. -7 D. -3
7
4 2
7 ,
12 2
x k
k k x
4 2
, 12 2 x k
k k x
5
4 2
5 ,
12 2
x k
k k x
3
4 2
3 ,
12 2
x k
k k x
236 287
195 287
92 287
51 287
4 3cos 2
y x
Lời giải
Ta có: cos 2x 1 3cos 2x 3 y 4 3cos 2x 4 3 1. Vậy GTNN của y1 khi cos 2x 1 2xk2 x k Chọn A.
Câu 15: Cho tập .Từ tập A có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?
A. 2048 B. 420 C. 840 D. 750
Lời giải
Gọi số tự nhiên có 4 chữ số thỏa mãn đề bài là abcd +) Nếu d 0 thì số cách chọn abc là: A73 210 (cách)
+) Nếu d
2;4;6
thì a có 6 cách chọn số cách chọn là bc là A62 Trong trường hợp này có: 3.6.A62 540 (cách)Số các số thỏa mã đề bài là: 210540750 (số) Chọn D.
Câu 16: Cho đường thẳng . Điểm nào sau đây thuộc đường thẳng :
A. B. C. D.
Lời giải
Thay x 1 t 1 y 5 điểm
1;5
d Chọn A.Câu 17: Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực nhật sao cho có ít nhất 2 nữ?
A. B.
C. D.
0;1;2;3;4;5;6;7
A
: 2 ,
3 2
x t
d t
y t
d
1;5
2; 3
2;3
3; 1
C72C65
C17C63
C64
C C72. 62
C C71. 63
C642 2
11. 12
C C
C75 C64
C76 C63
C62Lời giải
Có các cách chọn sau:
+) 2 nữ, 2 nam C C62 72 (cách) +) 3 nữ, 1 nam C C63 17 (cách) +) 4 nữ C64 (cách)
Theo quy tắc cộng, số cách chọn là:
C C62 72
C C63 71
C64 (cách)Chọn B.
Câu 18: Phương trình có nghiệm là
A. B.
C. D.
Lời giải
Phương trình đã cho cos 1 2 2 ,
2 3
x x k k
Chọn A.
Câu 19: Trong các mệnh đề sau, mệnh đề nào đúng?
A. Phép đối xứng trục là phép đồng nhất
B. Thực hiện liên tiếp phép quay và phép vị tự ta được phép đồng dạng.
C. Phép đồng dạng là một phép dời hình.
D. Phép vị tự là một phép dời hình.
Lời giải Chọn B.
Câu 20: Cho 2 đường thẳng song song. Trên đường thẳng thứ nhất lấy 7 điểm phân biệt, trên đường thẳng thứ hai lấy 9 điểm phân biệt. Hỏi có bao nhiêu tam giác có các đỉnh thuộc tập 16 điểm đã lấy trên hai đường thẳng trên?
A. 560 tam giác. B. 270 tam giác. C. 441 tam giác. D. 150 tam giác.
2cosx 1 0
2 2 ,
x 3 k k 2 ,
x 3 k k
3 2 ,
x k k 2 ;2 2 ,
3 3
x k k k
Lời giải
TH1. Lấy 2 điểm thuộc d1; 1 điểm thuộc d2 có C C72. 91 tam giác TH2. Lấy 1 điểm thuộc d2; 2 điểm thuộc d1 có C C71. 92 tam giác Vậy số tam giác cần tìm là C C72. 91C C17. 92 441
Chọn C.
Câu 21: Từ một hộp chứa ba quả cầu trắng và hai quả cầu đen, lấy ngẫu nhiên đồng thời hai quả. Tính xác suất để hai quả đó cùng màu
A. B. C. D.
Lời giải
Lấy ngẫu nhiên 2 quả cầu trong 5 quả cầu có C52 cách TH1. 2 quả cầu lấy ra cùng màu trắng có C32 cách TH1. 2 quả cầu lấy ra cùng màu đen có C22 cách Vậy xác suất cần tính là
2 2
3 2
2 5
2 5
C C
P C
Chọn D.
Câu 22: Giá trị nhỏ nhất của hàm số là
A. B. C. D.
Lời giải
Ta có sin cos 2 sin
x x x4
Mà 1 sin 1; 2 sin cos 2
x 4 x x x
Khi đó 2 2 2
sinxcosx
2 2 2 2 y 2 2 Chọn C.3 5
1 5
3 10
2 5
2 sin cos y x x
2 2 2 2 2 2 2 2
Câu 23: Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi A là biến cố
“Có ít nhất hai mặt sấp xuất hiện liên tiếp” và B là biến cố “Kết quả ba lần gieo là như nhau”. Xác định biến cố
A. B.
C. D.
Lời giải
Phần tử của biến cố B là B
SSS NNN;
Phần tử của biến cố A là A
SSN SSS NSS; ;
. Vậy A B
SSS SSN NSS NNN, , ,
Chọn C
Câu 24: Trong cho và điểm . Tìm ảnh của A qua phép ?
A. B. C. D.
Lời giải
Ta có
'
'
1 2
' ' 2;1 ' 3;4
3 1
A v
A
T A A AA v x A
y
Chọn D.
Câu 25: Có hai chiếc hộp: Hộp thứ nhất chứa bốn bi xanh, ba bi vàng; Hộp thứ hai chứa hai bi xanh, một bi đỏ. Lấy ngẫu nhiên từ mỗi hộp một viên bi. Xác suất để được hai bi xanh là;
A. B. C. D.
Lời giải
Lấy 1 bi từ hộp thứ nhất có 7 cách, 1 bi từ hộp thứ hai có 3 cách n
7.321 Lấy 1 bi xanh từ hộp thứ nhất có 4 cách, 1 bi xanh từ hộp thứ hai có 2 cách
4.2 8n X
AB
, , , ,
A B SSS SSN NSS SNS NNN A B
SSS NNN,
, , ,
A B SSS SSN NSS NNN A B
mp Oxy v
2;1 A
1;3 Tv
1;2
1; 2
1; 2
3;43 5
26 21
8 21
4 7
Vậy xác suất cần tính là
218P n X
n
Chọn C.
Câu 26: Biết n là số nguyên dương thỏa mãn Cn31An2 14
n1
. Giá trị của n là:A. 15 B. 16 C. 14 D. 12
Lời giải
Phương trình
3 2
1
1 ! !
14 1 14 1
2 !.3! 2 !
n n
n n
C A n n
n n
21 1 1
1 14 1 14
6 6
1 6 84 5 84 0 12
n n n n n
n n n n
n n n n n n
Chọn D.
Câu 27: Trong mặt phẳng, với hệ tọa độ , cho điểm . Phép tịnh tiến theo véctơ biến M thành điểm
A. B. C. D.
Lời giải
Ta có
' '' '
1 2 3
' '
3 4 1
M M
v
M M
x x
T M M MM v
y y
Vậy M' 3;1
Chọn C.
Câu 28: Trong cho đường thẳng d có phương trình . Ảnh của đường thẳng d qua phép biến đường thẳng d thành đường thẳng có phương trình là:
A. B. C. D.
Lời giải
Oxy M
1; 3
2;4v
' 1;7
M M' 3;2
M' 3;1
M'
1; 7
mp Oxy 3x y 3 0
O; 2
V
3x y 3 0
3x y 6 0 3x y 6 0 3x y 3 0
Gọi d’ là ảnh của d qua phép VO; 2 phương trình
d' : 3x y m 0 Gọi A
1; 0 d và VO; 2
A A'OA' 2OA
2;0
A'
2;0
Mặt khác A'
d' suy ra 3.
2 0 m 0 m 6.Vậy
d' : 3x y 6 0 Chọn B.Câu 29: Lớp 11A7 có 18 học sinh nam và 24 học sinh nữ. Thầy chủ nhiệm cần chọn 10 học sinh để luyện tập vũ khúc sân trường. Hỏi thầy chủ nhiệm có bao nhiêu cách chọn 10 học sinh sao cho có ít nhất 1 học sinh nữ?
A. B. C. D.
Lời giải
Lớp học có tất cả 42 học sinh
Số cách chọn 10 học sinh từ 42 học sinh là C1042
Giả sử trong 10 học sinh được chọn không có học sinh nữ có cách chọn Vậy số cách chọn thỏa mãn yêu cầu bài toán là
Chọn B.
Câu 30: Hàm số tuần hoàn với chu kỳ là bao nhiêu?
A. B. C. D.
Lời giải
Hàm số y = sin 2x tuần hoàn với chu kì 1 2 2
T π π
Hàm số y = tan2x tuần hoàn với chu kì 2 2 T π
Do đó; hàm số đã cho tuần hoàn với chu kì T π Chọn D.
10
C18 C4210C1810 C4210C2410 C2410
10
C18
10 10
42 18
C C
sin 2 tan 2 y x x 3
T
T 2
2
T T
Câu 31: Giải phương trình
A. B.
C. D.
Lời giải Ta có
0
0
00 0 0
0 0
cot 4 20 1 cot 4 20 cot 60
3
4 20 60 .180
20 .45
x x
x k
x k
Chọn C.
Câu 32: Sắp xếp 5 người trong đó có An và Linh ngồi vào 5 ghế thẳng hàng. Xác suất để An và Linh không ngồi cạnh nhau là:
A. B. C. D. 3
5 Lời giải
Sắp xếp 5 người vào 5 ghế có cách
Giả sử An và Linh ngồi cạnh nhau, khi đó coi An và Linh là một phần tử + 3 người còn lại ngồi vào ghế.
Khi đó, có cách sắp xếp để An và Linh ngồi cạnh nhau Vậy có cách sắp xếp để An và Linh không ngồi cạnh nhau
Chọn D.
Câu 33: Từ thành phố A tới thành phố B có 4 con đường, từ thành phố B tới thành phố C có 5 con đường. Hỏi có bao nhiêu cách đi từ A tới C qua B chỉ một lần.
A.9 B. 20 C. 1 D. 25 Lời giải
0
1cot 4 20
3 x
0 0
35 90 ,
x k k x200k90 ,0 k
0 0
20 45 ,
x k k x300 k45 ,0 k
1 5
4 5
2 5
5! 120
2! 4!48 1204872 72 3
120 5
P
Đi từ có 4 cách, đi từ có 5 cách.
Theo quy tắc nhân, đi từ có cách Chọn B.
Câu 34: Phương trình
A. B.
C. D.
Lời giải
Phương trình sin2x3sinx 2 0
sinx1 sin
x2
0
sin 1
sin 1 2
sin 2 2
x x x k k
x
Chọn A.
Câu 35: Trong mặt phẳng cho đường thẳng d có phương trình: . Ảnh của đường thẳng d qua phép tịnh tiến theo véctơ có phương trình:
A. B. C. D.
Lời giải
Gọi d’ là ảnh của d qua phép Tv phương trình
d' :x2y m 0 Gọi A
1;2 d và T Av
A'AA' v
2; 1
A' 3;1
Mặt khác A'
d' suy ra 32.1 m 0 m 1. Vậy
d' :x2y 1 0Chọn D.
Câu 36: Phép vị tự tâm tỉ số biến đường tròn : thành:
A. B.
AB BC
AC 4 5 20
sin2x3sinx 2 0
2 2
x k k xk
k
2 2
x k k xk2
k
Oxy x2y 3 0
2; 1
v
2 1 0
x y x2y 3 0 2x4y 3 0 x2y 1 0
0;0O 2