• Không có kết quả nào được tìm thấy

t/u.s paper we gwe a covdition for which the charateristic spectrum o f tÃc sequence of l i n t a r drjfereĩittaỉ equati on systeTUS are s t a b l e

N/A
N/A
Protected

Academic year: 2022

Chia sẻ "t/u.s paper we gwe a covdition for which the charateristic spectrum o f tÃc sequence of l i n t a r drjfereĩittaỉ equati on systeTUS are s t a b l e "

Copied!
8
0
0

Loading.... (view fulltext now)

Văn bản

(1)

V N U J O U R N A L OF SCIEN C E. N a t . S c i . . . \ XV . n‘^5 - 1999

O N U N I F O R M S T A B I L I T Y O F T H E C H A R A T E R I S T I C S P E C T R U M F O R S E Q U E N C E S O F L I N E A R

D I F F E R E N T I A L E Q U A T I O N S Y S T E M ’

N g u y e n T h e H o a n

Faci l it y o f Mỉitheiiìatic^, M e ch a ni cs a n d InibriuHtics College o f Natiiial Scicjices - V N Ư

D a o T h i L ie n

TeHchei \s T r yi ng Coilege. Th ai N g u y e n U n i v e r s i t y

A b s t r a c t : / / ? t/u.s paper we gwe a covdition for which the charateristic spectrum o f tÃc sequence of l i n t a r drjfereĩittaỉ equati on systeTUS are s t a b l e . T h is c on d it i on IS i m p o s e d 071 the coeffi.cemts o f s y s t e m s . The ob tai ne d results are appli ed f o r s tu d y i n g un tf on n roìighĩiess.

I. I N T R O D U C T I O N

C o n s i d e r a s e q i i e i i c e o f s y s t f ' i n s f o n s i s t i i i g OÍ l i n e a r c l i f f e r e i i t i a l e q u a t i o n

^ = . 4 „ ( n . T , T e n ' \ n = ( 1 )

fit

where An{f ) a X - m atrix contimious 01Ì [^O'Oo) and satisfies th e condition

sup ^ < C X ) ,'// — 1, 2, • • • (2)

t>fa

denote by the chaiatoristic sp e ctru m of th e system (1).

Let MS a s s o c i a t e w i t h (1) a s c q u e u r e of n o n - li i u' a r syyteiiis

^ = A „ ( / ) . r + / „ ( / , . ' ■ )

(if

p e rtu rb e d by the function ỷ n ự - x ) satisfying th e relation

| / n ( ^ - r ) l | < <^».l|-i'||.0 < Ố,. < Ỗ < CO. (4) As well known, Ishe above assum ptions imply t h a t the ch arateristic spectrum s of th e sequence (3) are a b ou n d ed set.

Denote by A„ the charateristic sp ectru m of (3).

* T his paper was supported in part by the National Research Program in N atural Scieces, K T 04, 137

28

(2)

D e f i n i t i o n . T h e c h a r i i t e n s t i c s p c c t r u u i o f (1) is'saici t o i>e ii iii fonui y ì ỉ p p c ỉ - s t ỉ i h ỉ e i f for Hu y g i v e n e > i) t h e r e e x i s t s Ò = ố{ f ) Sììch t h a t t h e H s s ỉ u i i p t ỉ u n (4) i m p l i e s

O n u n i f o r m s t a b i l i t y o f the c h a r a t e r i s t i c spectr^um f o r , . . 29

for all // € A „ .

If the assiiniption (4) implies

th en the ch a ia ti'iistic sp(‘ctru n i of (1) is said to be uniformly lower-stahlo.

If bo th the inoqualitios (5)-(6)hold. thoỉỉ tlif* charateristic sp ectru m of (1) is said to be uniformly stable.

Tho notion of uniforin staỉ)ility of a charateristic sp ectru m for th e sequence of differential equation syst(niis is used in tho s tu d y of uniform roughness of this sequence and, in tu rn , the Iinifonii loughiioss of the sequence of dirft'rential equation systems is used in estiin atio n of Iiunxber of stab le periodic solutions of th e differential system s [1.

II. S P E C I A L C A S E / „ ( / , . r ) -

First of all. wo roiisiiler tlii‘ special case when* is linear in x ,th a t is:

fn{t . -r) - 'I'hen th(' system (3) is of tilt' fonn

tỉ-i'

- .4,,(/)./■ + / ? , ( 0 . / - , // - | | ữ „ ( / ) | ị < < (S V / > / o (7)

ih'iiuti \>\ \ \ , aÍ, ^ < Aj the (. li ai nt t 1 i^it ii 11 liiii of (T).

A]>plyiiig P fM o n ’s tian sfo iin a tio n

■ r ^ U „ { t ) y , ( 8 )

where ư„{t ) is an o rth o g o n a l m atrix , tlu' system (1) is reduced to the trian gu lar one

§ = p»(')!/- (9)

wliere Pn{t) = { f ) A„{t ) Un{t ) - It is easy to verify th a t

\\Pn{f)\\ < M l , n = by th e traiisfo niiatio n (8), th e system (7) becomes

dy

(if = P n [ f ) y + Qn{f ) y, (10)

where Qn{ t ) - ^ { f ) Bn{ t ) UnỰ) - D enote by P u \ t ) , p \2\ f ),P2 2 Ự) elements of the m atrix Pn{t).

(3)

3() N g u y e n The H oan , D a o T h i L ie n w<‘ rewrite the syst('iii (10) a.s

<i)l

w h o I P

(h

K ( t ) =

{ ^ ) // + Q i i ( n fl ■ (1 1 )

V 0

i o Q „ ( 0 = Q n ( 0 +

Obviously, if B „ ( f ) < Ò: n = 1,2,... \vr liavc iic ? „ { /) l| < I I = 1.2,...

From tlu' rolatioii |1P„(0|| < Mị - 11= 1.2,... and bv applviiifi, th(> tra nsfo n n atioii

/— — VVO’ can verify tliat

V " V

Q,At)\\<

2

s/Al^.

(12)

Since Pn{f) is a diagonal m atrix, the solution \'(ĩ ) ot tli(' systf'iii (11 ) with the initial condition y{fo) = yo of the form

^ ( / ) = e x p ( I Pn{ r ) dr ) .ự(, + I ('xp ( - I Pn{s)<ls)Qn{r)y(T}<ỈT

■'to ^ - / / u 'U)

O r equivalent Iv.

e x p ( - I P n { r ) ( Ỉ T ) t j ị f ) = : (jo I ( ^ x p ( - I f \ { ' ^ ) d ' ^ ) Q n { r ) y { T ) < l r .

■Itu no -flu

Henc(\ WT obtain

( ' x p ( I P „ ( . s ) i / . s ) / / ( / ) < IIi/oII + I | | f ' x p ( - I f \ ( s ) ( l s ) C ^ „ { T ) o x p ( I F „ { s ) ( l s ) \

' Ita ■'/„ ^ h o 'h,

/■' - M

X

I

('xp( - / P,As)(ls) ' !

' -'U)

Denote by (i,i= L 2 ) elements of the m a trix Qn ự) - T h en bv stiaightforwaK calculations, \V(' liaví'

e x p ( ^ - Ị Ạ , ( r ) ( / r ^ ộ „ ( 0 < ' x p ( y Ạ , ( r ) f / r ) =

_ / '7Ỉ2’ (0<'>;P ( , / , „ [ / 4 2 ^ ) - /'ii V ) ] ^ /t) ^

Fioin the proof of Penoii'^3 thoon'iii \V(' (huhu'o i==l-2 ; U=L2,... wliPK^

{t), i = l,2 art* diagonal ('Irnieiits of the m atrix U~^( t ) A^, {t ) Un( t ) . As an orthogonal t raiisfoniation in the plaiio. P erron's m atrix u „ ( f ) in this case is of t he form

(4)

O n u n i f o r m s t a b i l i t y o f the c h a r a t e r i s t ị c s p e c t r u m / o r . . . :n

o r

n __ { - s i n v j ( ' ') ( 0 ^

C O S ^ ( " ) ( 0 ,

whe re is t he aii^le betwe(‘n a s o l u t i o n o f (1) and t hv axis Tị. a direct c o m p u t a t i o n s h o w s t h a t

l > \ V i ^ ) ~ P 2 2 Ì ^ ) = P n ^ ( ^ ) - P 2 2 ^ ( 0 = < ' o s 2 < ^ o ^ " > ( f ) Ị n ị " ’ ( f ) - a ị 2 ’ ( 0 ì + ^ i n 2 ự > < " > ( f ) l a ị ' Ị ^ + o . ị : ^ > ( f )

/ 4 2 V ) V , ”*(o = /í Ì2 V )-P Í" V ) = cos2^<”)(0[o.i:]>(0-«iiV)l-sni2v^('')(0[4i^+«i”V )

Th(MefoK\

p ' j ; ' ( n - / : ; > i t ) = ự í i ^ l V í ' ) - + [ « y ; ' + , / , ' ; ' ( 0 P ) ^ < ™ | 2 i ' " ' ( / i + 4 -,.{ ()

in which

A " ' ư ì - " ' ă m and

- p\:ht) = V {!"n V ) -

4

;;V)]^ + [

4

" ^ + «i;;’(

0

in- C'OS [

2

^<")(

0

+ ^„{t)

W'UoiV ^ t , ự ) - ^I^Tí(0 +

l)(‘llOĨ(‘

- V [ " n V ) - 4 2 * ( 0 ] '’ + ỉ4';^ + Thí' ahovf' rcasoiiiii^ ^iv(‘ us

! | e x p ( - i P n { T ) d T ) Q n { t ) e . \ p { i P n { r ) d r ) < M ^ V S x

'fo -fto

{(>xp( f n „ ( r ) cos [2<ỉ>*'''^(r) - 'i'n ( r ) ] i / r ) + pxp ( / n „ ( r ) COS [-7T + 2i^^” *(r)

■ho . ' t o

(14)

Assimie

VLj,{t)(Ìt < c < oo, n = 1,2,....

then

p x p ( - / Pn { r ) d T ) Qn { f ) e x p

Pn{r)dT < A/;jV^.

■ ' t o ' ' t o

(15)

(16)

(5)

32 N g u y e n The H o a n , D a o T h i L i e n T h e inqualities (13)-(16) imply th a t

e x p ( - / P u H T ) d T ) y i ( t ) < e x p { A h \ / ố ) { t - t o ) ,

■ho

e x p ( - / P u \ r ) d T ) i j2{ t ) < exp (A/3 v 4 ) (f - ^o)-

■ho

(17)

( 18)

From (17)-(18) and properties of trian g u lar system s we deduce x ị yi ự) ] < A/3V^ + A ị"\

\[yi(0] < A/3V^+

R em ark t h a t the transfoinations used in the above reasoning do not change the charateristic sp ectru m of clifFeretial equation systems. Therefore, if

then

Hence,

x ị y i ự) ] < .^2"^ -h f. (19)

(2 0)

We f i n i s h t h e s p e c a l c a s o by g i v i n g a l o w e r V)Ouiul f o r For

this purpose we assum e th a t (1) is regular. Let

7 i £ > 2 ’ ^1 ^ 7 - 2

denote th e s p e ctra of th(' adjoint syisteiiis conosponding to (1) and (7). Then hv P m o i r s theorem and Ly ap uno v' s iiioqiiality W ( ' liaví'

A‘" ) + 7 Í ” ^ = 0 , Ã Í ' ' ’ + f , " > > ( ).

Applying (20) to the bigger charateristic exponent it yields

7',” ’ < ^

or

Thus,

ã1'” > À<” > - (21)

Sumiĩig up, we heve the following:

(6)

O n u n i f o r m s t a b i l i t y o f the c h a r a t e r i s t i c s p e c t r u m f o r . . . 33 L e m m a ,

For f sinali ciioĩigb and

i i t , { r ) ( l T < ( ' < oo, — 1 , 2 , . . . ,

■ft where

We have

!!» ( ') = + l<4” ' +

Moreover, if the Al l s y s t e m s o f (1) are regiilm-, we h a v e also

f ,7i = 1 ,2 ...

Now, t he gpiieial ca.se can be reduced t o the s pecial one by mpans o f t he linear i n c l u s i o n p r i n c i p l e (.S('‘e [3]).

T h e o r e m . Undcj the as sumptions o f the ỉeniiim, the diHiateristic sp ectniin o f the se­

quence o f s ys te m s (1) is uniformly uppei-stĩible .Moreover, i f all s ys te m s (1) are regiilar the charaxeristic s pcc tn iin ot the seqiience is HÌSO unifoiiniy luwer-stnlile and hence it is unifornily stỉìhlc

Proof. Let .r{t) be a noutri\-ial solution of (3). Accoi'ding to thf> linear iiiclusloa princriple in [3],

x{t)

is a nontrivial s ol ut io n o f linoar s y s t e m

d:r l i t If (4) hold, then

<Ị)„(7) < -^ ,» = 1,2,...

SiiK'c tliP systPiii (22) is linear \V(‘ can a pp ly the a bov e Ipmiiia and then (23) gives us

;tlx(.)| < Aị"> + Í If (1) is regular, then we have

R e m a r k . For aỊ"* = this nnphes the result in [2j.

(2 2 )

(23)

Now wo shall s tu d y the uniform roughness of the following sequence of differetial oquation system:

d x

(If (24)

w h e r e , An{ t ) is a n m X m -ư iat.rix w h ic h is c o n t in u o u s a n d b o u n d e d o n

[^0

o o ).

(7)

34 N g u y e n The H oan , D a o T h i L i e n D e f i n i t i o n . Systenj (24) is said to he uniformly rough if there is H positive ỉiiỉinl)Cỉ Ố, siicii that for every iiiHtrix Bn( t ) sHtisfyiiig the relntioii:

the systems

d r

I t (25

have only nonzero chaiHteristic exponents.

Let Aj, = < A.2"^ < ... < n = 1 , 2 , . . . . be th(' charactiMistic sptH-trulu of (24). Tho following condition is necessary for th e u n ifo n a roughiiPss of sy stem (24):

P r o p o s i t i o n 1. Sup pose tha t sys tem (24) is uniformly roĩỉgh. Then there is an intcivfii (a,/?), contaiiiing zero, Sĩiclì that:

(o, i?) n =

for every n = 1, 2,...

Proof: We prove this by contradiction. Suppóse th ere is a sequence of characteristic

e x p o n e n t s € Aa:} ( I < 7/, < m ) s u c h t h a t

Consider tho sequence of systems:

(Ix

1ĨĨ

lini — 0, k--oc

A, { f ) - (26)

where I i.s tlu* unit inatiix. For suitably largf' /.■ ||A/ / < hut a / - a / — 0 is in tlií' characteristic spo ctn u ii of (26). This coiitiacts with uniform roui^li of (24). Ộ

Definition of unifoiin stability of spectruni for seqiK^ncí' (24) is .siiiiilai to tho U]|(’ ill section 1: inequality (5) is changed by ỊÁ < Am ^ f .

P r o p o s i t i o n 2. . Assui ii Ji ie that there is ÍÌ11 iiitei vai ( a , /3) co/itaiiiiiig zeio, such that either ( - 0 0, /?) n An — 0 n - 1,2,...

or (a, -f-0 0) n = 0 1) = 1, 2,...

Mo re over , s ỉ i p p o s c t h a t t h e c h a r a c t e r i s t i c s p e c t n u n o f (24) is ỉi/]jfoiiijiy stnhle.

Then the a/jove systeij] is lUiiforiJiIy lOiigh.

Proof.

T he proof follows directly from its hypothe'ses and definition, ộ

Consider now th e case in = 2. T h e proposition 2 and the proved th eo rem give us:

(8)

C o r o l l a r y . Suppose tb ^t there is iiii iỉitcivíìl { n j 3 ) conti^ìiiiiĩig zero Ỉìiiiỉ satisfying condi- tioii o f proposition 2 for the CHse Iii^2. Moicovct , suppose tỉiHt:

On unifoT'rn s t a b i l i t y o f the c h a r a t e r i s t i c s p e c t r u m f o r . . . 35

I V + h'ViV) + a[

2

Hr)Y-<lr < c < oo{n ^

1

,

2

,...)

l l i c n t h e sc(ỊĩieỉiCC UÍ' s v s t ci i i s (Ỉ) is uiiiforinlv roiigh.

REFERENCES

1] V.I. Pliss. IvieẠỊìuì niaiitfolds of per'iodic systems. Moscow. 1977 (Russian).

2] L. A. Aiulii anov a. IJuifonii s t a bi l i t y o f c h a ra t ei i st ic e x po n en t ia l n umbe rs of se- queiK’es of I(‘gular systoiiis. Dỉff. ưraveĩiernịa, Nơ 10, 1974 (Russian).

3] B.F. Bylov, R.E. V'inogiad. D.M. Gi'ohinan, and v . v . Nemyckii. Theory of Lyct- puTiov Exponents. Nauka Press, Moscow, 1966 (Russian).

4] B.P- Di'uiiduvich. Lecf urts 0Ĩ) Mafhernaf ical Theory of Sfability. Nauka, 1967 (Rus­

sian ).

T A P CHÍ K H O A H O C Đ H Q G H N , K H T N , t . x v , n^5 - 1999

Sir ON ĐỊNH DEIJ CƯA PIIO DẶC TRƯNG CỦA DAY ÍỈẺ P H r ơ N C TRÌNH VI I^HAX TUYEN TÍNH

T l i p H o iin

/ v i j O r i Tuííii - Cơ- Tin học - Dại học K H Tì/ Iihiẻĩi - DH Q G H à Nội Đ à o T h i L i ê u

Khoíì Toán, Đại Ỉ Ì Ọ C Sìĩ p h ạ m Thái Ngĩìvèn

Trong bài báo này, chung tôi đ ư a ra m ột điều kiện ổn đ ịn h của phổ đặc trư n g của một (lảy hè phvrưiig tiìn h vi phản tu y ến tính. Điều kiện này đ ư ợ c đ ặ t lên các hệ số của he p h ư a n g trìn h tư a n g ứĩig. Kết quả nhận đ ư ự c ílirợc áp (lụng cho việc nghiên cứu sự thò đều.

Tài liệu tham khảo

Tài liệu liên quan

Relating conditions for

In [1 2] the physics problem was restricted for degenerate semiconductors in the case of m onophoton ahsorptioii Tho rpsnlts of works [1,^] iìuliraí-o th at tho

CỉiHTca HOBbix orpaHiiqecKHx pcarenTOB HeopraHimec- Koro awaajiea.. The

Cognitively that function, the company ’ s executive try to find out the best ways or the best strategies how to hire the best people for their company, or how to have the best

Capital structure and rm performance: evidence from an emerging econom.. The Business

¾Là những túi lớn, nhỏ nằm trong tế bào chất, chứa đầy chất dịch (gồm nước và các chất hoà tan) gọi là dịch tế bào.

[r]

[r]