• Không có kết quả nào được tìm thấy

T H E Q U A N T U M TH EO RY OF A M P L IF IC A T IO N OF S O U N D (A C O U ST IC P H O N O N S ) B Y L A S E R W AVE IN N O N - D E G E N E R A T E S E M IC O N D U C T O R

N/A
N/A
Protected

Academic year: 2022

Chia sẻ "T H E Q U A N T U M TH EO RY OF A M P L IF IC A T IO N OF S O U N D (A C O U ST IC P H O N O N S ) B Y L A S E R W AVE IN N O N - D E G E N E R A T E S E M IC O N D U C T O R"

Copied!
6
0
0

Loading.... (view fulltext now)

Văn bản

(1)

VNU. J O U R N A L O F SCI ENCE, Nat. Sci., t.xv r fil - 1999

T H E Q U A N T U M TH EO RY OF A M P L IF IC A T IO N OF S O U N D (A C O U ST IC P H O N O N S ) B Y L A S E R W AVE IN N O N - D E G E N E R A T E S E M IC O N D U C T O R

N g u y e n Q u a n g B a u , N g u y e n V u N h a n a n d C h h o u m m N a v y FHciiIty o f Physics - College o f Natural Sciences - V N U

A b s t r a c t . Based on the quantum, transport e q u a tio n for the e le c tr o n - p h o n o n system

o f s e m i c o n d u c t o r s , the a m p l if ic a t io n o f s o u n d ( a c o u s t i c p h o n o n s ) b y L a s e r w a v e w ith m u l H p h o to n a b s o r p t i o n p r o c e s s IS t h e o r e tic a lly s tu d ie d . T h e a n a l y t i c e x p r e s s i o n s f o r th e c o e ffic ie n t o f a m p l if ic a t io n o f s o u n d ( a c o u s t i c p h o n o n s ) a n d t h e c o n d i t i o n s o f aTTi.plificat.ion o f so u n d (a co u stic p h o n o n s) in n o n -d eg en era te s e m ic o n d u c to r s a n d in th e c a s e w i th s u m m a t i o n o v e r a ll v a lu e s w ith m { n - a f r e q u e n c y o f L a s e r w a v e

^ ~ i 2 . . J are obtained. The difference of the coefficient of amphfication

o f s o u n d ( a c o u s t i c p h o n o n s ) a n d th e c o n d i t io n s o f a m p l if ic a t to n o f s o u n d ( a c o u s t i c p h o n o n s ) m the ca se w i th m u l t i p h o t o n a b s o r p t i o n from, th e case w i t h m o n o p h o t o n ab so rjitio n IS discussed.

I. INTROD UCTIO N

The tlieoiy of amplification of sound (acoustic phonons) by Laser wave ÊoSin(ÍÌỂ) (ÍỈ - the frequency of Laser wave) in semiconductors has been studied [l 2 3]. In [1 2] the physics problem was restricted for degenerate semiconductors in the case of m onophoton ahsorptioii Tho rpsnlts of works [1,^] iìuliraí-o th at tho ahnoiption coofficicnt of aouiid (acoustic phoiions) can bo negative in some regions of values of acoustic wave vector ỹ That is t he absorption coefficient of sound (acoustic phonons) changes into the coefficient of aniplificat.ion of sound (acoustic phonons). In [3] the analytic expressions for the ab- soiption roefhciont of sound (acoustic phonons) have been obtained for the case of non- (legpneiate semiconductors with multiphotoii absorption process, but in restricted values:

A <$: k T q ^ Ị2ĩn^ ^ k T and À k T ( m and e - the mass and charge of election ; A zr eEo/ĩĩiíì; k - the Boltzman constant ; T - the tem perature; ujq- th e energy of acoustic phonoris (h = 1) ) and the condition of amplification of sound has not been obtained .

In order to continue the ideas of [1,2,3 , in this paper we consider theoretically the amplificat ion of sound (acoustic phonons) by Laser wave in non-degenerate semiconductors with multiphoton absorption process (in the case with summation over all values f — 0 , ± 1 , ± 2 , . . . ) for the value ujệ^ X which is not restricted by the condition in [3] and we obtain the condition of amplification of sound.

(2)

II . T H E QUANTUM TRANSPO RT EQUATION FO R PHONONS

Hamiltonian of electron-phonon system of semiconductors with the presence of Lasei wave ẼQSÌniíìt) has the form

2 N g u y e n Quaĩig Bail, N g u y e n Vii Nhati, ChhouTntn N a v y

p q p.9

(1)

where; a t and ap (6 t and feq) - the creation and annihilation operators of electrons (phonoiis); p - the vector of momentum of electron; c - the velocity of light ; Cq the interaction constant of electron- acoustic phonon scattering; A{f) - the vector potential

( ^ _ k ị m ^ Ể o S i n m ) .

Proceed from (1) and used method of [4,5,6] the quantum transport equation for phonons in semiconductors with the presence of laser wave has the form

— ---'ỉ^q{bq)t — 2 Ujĩ-^) i dt\{bq)t^X

uf ^ ./-00

p

00

X exp {ii^p — ^p~q){^l — /) — i f i i t i + i s ũ f } J ỹ {S^JsioQ)^

f,5 = —00

(2)

wherp: the symbol (.t)^ means the averaging of statistics of operator .t; np tK6 distribution function of electron; 6ịĩ the energy of election; ã = (eỂ o/m íì^); Jf {z) - the Bessel function with real argument.

III. AM PLIFICATION OF SOUND (ACOUSTIC PHONONS) IN NON-DEGENERATE SEM ICONDUCTORS IN M O NOPHOTON ABSORPTIO N PROCESS

By using t h f Foiiiiei ti ansfonnation from (2) we find

oo

y Jf{nq)Js{Õ-q}ĩlẶ^ + f^^^)Bq {u J-m + síì), (3)

f.s=.~oo

where

In the case of / = s from (3) we have dispersion pquation

oo

UJg) - C ĩ

(4)

:5) f=-oo

and absorption coefficient of sound (acoustic phonons)

oo

a ((^ — ^ Cq- ^ (np- — 'tf-p+q) è {£p-\-q — ~ ~ f. = — oo p

(6)

with 0(.r)- the Dirac delta function.

(3)

S11Ị)Ị)US(‘ lliat tin* ai^u n irat of the Bessel function is small so that aq = A/Q «c 1.

[ [loin suimnatioii to intoíỉ^ration over /7 in (6) the absorption coefficient of sound (acoustic plioiious) for monophotoii absorption process (in the case with sum m ation over oal\' valui's (iĩ with / = 0, ±1) has the form

The Q u a n t u m T h eor y o f Am pl ifi ca tio n o f S o u n d ... 3

e x p ( 2 5 , - w , - í 7 ) s h ( í ^ |^ ) + exp(-2S,-w,-Q)

rxp 4777.'^ (7)

wlitne S(Ị — ììi /{2q^KT) ; no-íhe density of electron; ^ - the constant of deformation potential: -s -volocity of sound ; p - the donsity of crvstal.

IÍ we have a(íỹ))(). If ujự/íì 1 we have a(i7)(() and which has the form

p.s \ 2 k T )

A

{ m sh n

2 k T s h { 2 S g u j A i )

X f‘xp +

.4 \ ■

(8)

It uii-aiis tliat W(' have the coofficient of amplification of sound (acoustic phonoiis) . IV AM PLIFICATION OF SOUND (ACOUSTIC PHONONS)IN NO N-DEGENERATE

SEMINCONDUCTORS IN M ULTIPHOTON A B SORPTIO N PR OCESS From ((j) we havo

0(^/1 = Trj CẬ ^ .jj(,uỊ)Y^n^{h{ep,^^^ - e,, - - m ) - - 6f! + - m ) } .

f — —rxj p

\)ii used d / - --OC

F ;

In íli(' casp of X)ịì used changing fonniila in [6.7] : n

VViK'lC

7t(A'^ - 4 ) 1 / 2 1 if 2)0 fì{z) =

0 if z{ồ, wo ha\'(’

(9) (10)

(11)

Passing fioni suniination to integration over 7? in (11) the analytic expression for tlie absorption coefficient of sound (acoustic phonons) by Laser wave for m ultiphoton absorption process (in the case with sum m ation over all values fVt with / = 0, ± 1 , ± 2 ,...) is following

(4)

N g u y e n Q u a n g B a n , N g u y e n Vu N h a n , C h h o u m m N a i ĩ y

( III \>/2 nii,A2 2qH'T

|^(u;q-) - e x p ( - i l ) A ( - u j ạ ) j ,

exp 77?

2q‘H'T

\ 2'

2ĩìỉ — UJ,

oc

i=n ,7!

(12)

where : A(u;q-) = ( O T ( Ẻ Ỉ function with com-

plex argument; r (2) - the G am m a function.

It is important to note th a t the expression for the absorption coefficient of sound (acoustic phonons) is calculated exactly by direct sum m ation over all V'alues f n . FutliPi- more. if

A{u,^)> exp (13)

we have a ( ^ ) 0 and if

A{u>ạ) < exp [ - ^ ) A { - U J ạ ) , we have a(if)(0 and which has the fonii

(14)

a { q ) = -

Ỉ. I>0 ( ni \ 1/2 ) f'xp

2ps \ 2k T J

I exp ( - ^ ) Ả(-U>ạ) - A(Wự-)| .

\ exp in ' V I

2qH-T V 2m

.;-0 J!

(15 It moans that we have again the coefficient of amplification of sound (acoustic phonons).

From the analytic fonimla (12) we make analyze the absorption coefficient of sound in Ihuil Lơậ ^ / 2 ỉ t t , X ^ AT, ujq’ ^ AT aiiei k \ ị T q ^ / 2 m tln u tlio iumiiiu nt of the Bessel function is bigger than 1 , the summation only value j ~ 0 and lo(^) ^ c^y/2nz.

Om result for tho absorption coofficient of sound ill this limit cases is tho saiiK^ losiilt of 3].Not that if the condition of amplification of sound (14) is satisfied then tho absorption coefficient of sound changes into the coefficient of amplification of sound.

We ninnorically evaluate and plot thf* analytic formula (7) for the casr of Iiioiioplio- ton absorption (Fig.l) and (12) for the caso of inultiphoton absoiption (F'ig.2) in the sanii' condition. Thò absorption coefficient of sound (acoustic phonons) is plotted as a fuiK tion of tho froqiu'ury of Laser wave (Q) and of the froquency of souml (acoustic phonon ) (ujy-).

From the graphics we can see

- For the nionophoton absorption : when UJ^/Q > 1 we have the absorption coi'ffi- cient of sound (acoustic phonons) a{q) > 0.

- Ill the same condition for the case of multiphoton absorption wo have again tho coefficient of amplification of sound (acoustic phonons) a{q) < 0.

Note that, the (lependonce of the coefficients of amplification of soinitl (acoustic phonons) on the frequency of Laser wave (Í2) and on the frequency of souiul (acoustic phonons) (iu’ỹ) is nonlinear and complicated.

(5)

The Q u a n t u m T h eor y o f Amp lif ic at io n o f So un d ...

M to®

OMEGA. ấ)dft

Fụj 7:Tho c oofficient of amplification of sound (acoustic phonons) ill the case of inonophoton absoipfion

K- axis = (\{(])~ axis : o m e g a - axis = - axis : O M E G A - axis = ÍÌ - axis

X 10

OMÊOA-w»s a 0

/'/Ự 2: TIh^ coi'fficifuit of amplifii'ation of soiiiul (acoustic phouons) in th(‘ casi^ of Iiiult iphoioM ahsoi ptioii

S3- axis ^ H X I S I OlllGgii - iixis — i j j q - axis ; O M E G A - axis = Q - axis.;

V. CONCLUSION In the conclusion, we want to (‘Iiiphasizo that :

1. The analytic expiossions for the' condition uJệ/íì <g: 1 and the coefficient of ampli­

fication of sound (acoustic phonons) (8) ill the case of monophoton absorption and for tho condition and coefficient of aiuplificatioii of sound (acoustic phonons) (14) , (15) in

(6)

the case of multiphoton absorption arc obtained by us first tiiluv In tlio limit ( as(‘s

< kTq^/27n,Lj^ > /2ni- and UJ^ kT. A > k T th(‘ absorption coefficient of sound with multiphot.on absorption process (12) return to th e rosult of [3 .

2. In the case of monophoton absorption (Section 3) : our results are different from results of [1,2]. The reavSon of difference is th at results of [1,2] for the case of dogenorate semiconductors, but our results for the case of non-dogeiierate seinicoiuliK tors.

3. In the multiphoton absorption (Section 4) : the expressions for the coiulition and the coefficient of amplification of sound (acoustic phonons) (14), (15) show th at tlie different dependencies of th at ones ill comparison with results of [1,2 and Section 3. The reason of difference is th a t results of 1,2] and section 3 for the case of m onophoton absorption, but. the expressions (14) and (15) for the case of m ultiphoton absorption.

A c k n o w l e d g m e n t : We would like to thank the niomber of group of Theoretical Solid s ta te Physics, Faculty of Physics , College of N atural Science , V ietnam National Univpisit v for their discussions and the National Project on Basic Science K T 04 foi financial support

R EFER EN C ES 1] E.M. Epstein. Radio physics, 18(1975) 785.

2] E.M. Epstein. Lett. JET P, 13(1971) 511.

3 Nguyen Hong Son, G.M. Shmelev and E.M. Epstein. Izt). V UZ O B S S S R J Physics.

5(1984)19.

41 D.K. Ferry and Carlo Jacoboni. Qĩiarứuin transport in semiconductors. New York- London 1992.

5] G.M. Shmelev and Nguyen Quaiig Bail. Physical phenomena IĨÌ sennconductors.

Kishinev (1981)12.

6] Nguyen Quang Bau and Nguyen Van Huong. J. Science of HSU, Physics, 3(1990)

8.

7J L. Sholimal. lun nel effects in semiconductors and appb call OTIS. Moscow 1974.

TAP CHI KHOA HOC ĐHQGHN. KHTN. t.x v , vPl - 1999

6 N g u y e n Quang Bau, N g u y e n Vu N h a n , C h h o u m m N a v y

LÝ T H U Y ET LƯỢNG T Ử VÉ SỰ GIA TANG SÓNG ẢM (PH O N O ÀM) BỜI SÓNG LASER TRONG BAN DAN KH ÒNG SUỴ BIEN

N g u y ễ n Q u a n g B á u , N g u y ễ n V ũ N h â ĩ i, C h h o u m m N a v y Khoa Vật ìý - Đại học K H Tự nhiên, ĐH Q G Hà Nội

Tròn cư sờ phương tiìuli động lượng tiV do hệ điện tiV - phonon c ua hán (lan, ỉighi(Mi cứu lý thuyết sự gia tầng sóng ảm (phonon âni) bờ sóng Laser có kể đốn quá trình hấ]^

th ụ nhieu photon. Thu được biểu thức giải tích cho hệ số gia táng sóng ảni (phoiioii âiiì) và đieii kiện gia tăng sóng âm (phonon ảin) trong trư ờ n g h ạ p có kô đến tíiih toii^

theo tấ t cả các đại lượng chứa fíì{Q, — tần số sóng Laser, / — 0, ± 1 ; ± 2 ;...). T hảo luận VP sự khác nhau của hệ số gia tăng sóng âm (phonon âm) trong trư ờ n g hợp hấp thụ nhieii photon so với trường hợp hấp th ụ một photon

Tài liệu tham khảo

Tài liệu liên quan

X-ray diffraction patterns of studied samples.. Fig.2 pre sen ts the X-ray diffraction p a tte rn s of studied

This paper presents some numerical results of bending and vibration analy- ses of an unstiffened and stiffened folded laminate composite plate using finite element method The

(c) highlighting tho contradictoiy nature of tho descrih&lt;*ci; (2) rrflection of the vivicl Mìiotional expression of speech; and (3) creation of oxymoron

As the first module within the Soil and Water Management (SW) series, this module introduces basic physical, chemical and biological properties that affect agricultural soils..

For saline soils with high enough salt levels to significantly damage plants and reduce growth, reclamation with excess water is recommended, provided there is enough good

cover will have a 50% reduction in soil loss compared to a bare field. This effect of residue cover on reducing soil loss occurs for a variety of reasons. As previously discussed,

IljcK' ai&lt;' various iiuMliocls of investigation of the fusion for crystal such as Liiide- imiiii UK'iliud... In the approxim ate limit of the two first aiul

In this paper, the absolute efficiency of HPGe detector is surveyed and mearsured at different distances from detector and different gamma