• Không có kết quả nào được tìm thấy

Ôn Thi Vào Lớp 10 Môn Toán Chuyên 18. ĐỘ DÀI ĐƯỜNG TRÒN, CUNG TRÒN. DIỆN TÍCH HÌNH TRÒN, HÌNH QUẠT TRÒN

N/A
N/A
Protected

Academic year: 2022

Chia sẻ "Ôn Thi Vào Lớp 10 Môn Toán Chuyên 18. ĐỘ DÀI ĐƯỜNG TRÒN, CUNG TRÒN. DIỆN TÍCH HÌNH TRÒN, HÌNH QUẠT TRÒN"

Copied!
14
0
0

Loading.... (view fulltext now)

Văn bản

(1)

Chuyên đề 18. ĐỘ DÀI ĐƯỜNG TRÒN, CUNG TRÒN.

DIỆN TÍCH HÌNH TRÒN, HÌNH QUẠT TRÒN A. Kiến thức cần nhớ

1. Công thức tính độ dài đường tròn

“Độ dài đường tròn” (còn gọi là “chu vi hình tròn”) được kí hiệu là C.

Độ dài C của một đường tròn có bán kính R được tính theo công thức C2R.

Nếu gọi d là đường kính đường tròn (d2R) thì Cd.

2. Công thức tính độ dài cung tròn

Trên đường tròn bán kính R. độ dài l của một cung tròn n0 được tính theo công thức

180 lRn

3. Công thức tính diện tích hình tròn

Diện tích S của một hình tròn bán kính R được tính theo công thức:

SR2

4. Cách tính diện tích hình quạt tròn.

Diện tích hình quạt tròn bán kính R, cung n

được tính theo công thức

2

360 SR n

. B. Một số ví dụ

Ví dụ 1. Cho hai đường tròn (O;2 cm) và (O';1cm) tiếp xúc ngoài với nhau tại A. Qua A vẽ một đường thẳng cắt đường tròn (O) tại M, cắt đường tròn (O') tại N. Xét các cung nhỏ của hai đường tròn, chứng minh rằng: độ dài của cung AM gấp đôi độ dài của cung AN.

Giải

Tìm cách giải. Dựa vào công thức tính độ dài cung, ta đã biết bán kính của mỗi đường tròn. Nên để tìm mối quan hệ giữa độ dài các cung, ta tìm mối quan hệ giữa góc ở tâm.

Luôn nhớ rằng đường tròn (O) và (O') tiếp xúc tại A thì ba điểm O, A, O’ thẳng hàng nên '

OAMO AN suy ra được AOMO AN' . Vậy sử dụng công thức tính độ dài cung AM, cung AN từ đó ta có điều phải chứng minh.

(2)

Trình bày lời giải

OAM cân tại O;O AM' cân tại O' có '

OAMO AN nên '

AOMAO N.

Đặt AOMAO N'  n Suy ra sđAM = sđ AN  n

Độ dài của cung AM là: .2. 2 180 180

AM

n n

 

 

ℓ (1)

Độ dài của cung AN là: .1.

180 180

AN

n n

 

 

ℓ (2)

Từ (1) và (2) suy ra 2

AMAN

ℓ ℓ

Ví dụ 2. Cho nửa đường tròn tâm O. Đường kính AB = 12cm. Gọi D là điểm chính giữa của nửa đường tròn. Dựng hình bình hành ABCD. Tính diện tích phần tô đậm.

Giải

Tìm cách giải. ABCD là hình bình hành đã biết độ dài AB mà độ dài 1

DO2AB tính được, nên diện tích hình hình hành ABCD tính được. Dễ dàng nhận ra hình viên phân cung AB và hình viên phân cung BD có diện tích bằng nhau, do đó diện tích phần tô đậm bằng diện tích ABCD và bằng nửa diện tích hình bình hành ABCD.

Trình bày lời giải

Dễ nhận thấy hai hình viên phân cung AD và cung BD có diện tích bằng nhau do đó diện tích phần tô đậm bằng điện tích ∆BCD

Mà 1 2

. 36

BCD ABD 2

SSAB ODcm . Nên diện tích phần tô đậm là: 36 cm².

Ví dụ 3. Trong hình vuông cạnh là l đơn vị được chọn ra 101 điểm. Chứng minh có 5 điểm trong

các điểm nói trên có thể phủ bởi đường tròn bán kính 1 7. Giải

Tìm cách giải. Đây là dạng toán nguyên lý Đi-ric-lê hình học. Nguyên lý được phát biểu đơn giản như sau: Cho m chú thỏ được nhốt vào n lồng (m n: k và còn dư) thì tồn tại một lồng có ít nhất

(3)

1

k chú thỏ. Phân tích đề bài, chúng ta thấy đã cho 101 điểm (tức là thỏ) và chứng minh có 5 điểm (tức thỏ) thuộc cùng một đường tròn bán kính 1

7 (thuộc cùng một lồng), do vậy ta cần xác định số lồng. Để xác định số “lồng” ta làm như sau: lấy 5 1 4, sau đó 101 : 425 và dư 1, nên ta chia thành 25 “lồng”.

Trình bày lời giải

Chia hình tròn thành 25 ô vuông có cạnh là 1 5. Ta có 104 : 254 dư 1.

Theo nguyên lí Đi-ric-lê, tồn tại ít nhất 5 điểm cùng thuộc một ô vuông cạnh 1 5. Ô vuông này có đường chéo là 1 2

5 2  5 . Bán kính hình tròn ngoại tiếp hình vuông nhỏ là:

2 1 1 1 1

5 : 25 2  50  49  7

Suy ra ô vuông này nằm trong hình tròn có bán kính 1

7 có tâm là ô vuông ấy.

Vậy hình tròn chứa ít nhất 5 điểm đã cho.

Ví dụ 4. Trong hình vuông cạnh là l, người ta đặt một số đường tròn mà tổng độ dài của chúng là 10. Chứng minh rằng bao giờ cũng tìm được một đường thẳng cắt ít nhất 4 trong các đường tròn nói trên.

Giải Tìm cách giải. Bài này cần chứng minh hai ý:

-Ý thứ nhất: Chứng minh tồn tại ít nhất 4 đường tròn. Để chứng minh ý này ta dựa vào tổng độ dài của chúng là 10, từ đây có thể suy ra tổng các đường kính (mỗi đường tròn lấy một đường kính). Nếu các đường kính này song song với một cạnh hình vuông, tổng độ dài của chúng lớn hơn 3 lần cạnh hình vuông thì phải có ít nhất 4 đường kính, suy ra ít nhất 4 đường tròn.

- Ý thứ hai: Chứng minh tồn tại một đường thẳng cắt ít nhất 4 đường tròn. Ý này không khó bởi:

nếu bốn đường kính này song song với một cạnh hình vuông và bốn hình chiếu trên cạnh hình vuông của chúng có một điểm chung thì đường thẳng vuông góc với hình chiếu tại điểm chung đó cắt 4 đường tròn.

Trình bày lời giải

(4)

Kẻ các đường kính của các đường tròn song song với cạnh AB của hình vuông rồi chiếu các đường kính đó lên cạnh AB. Các hình chiếu đều nằm trọn trong AB.

Tổng các đường kính là 10

 nên tổng các hình chiếu là 10 10

3 3.AB

  (vì AB = 1) mà mỗi đường kính AB nên tồn tại ít nhất 4 đường tròn.

Tổng các hình chiếu này 10 3AB

nên tồn tại một điểm của AB thuộc ít nhất 4 hình chiếu. Đường thẳng vuông góc với AB tại điểm đó là đường thẳng phải tìm.

C. Bài tập vận dụng

18.1. Cho một đường tròn (O;R). Hai tiếp tuyến tại A, B cắt nhau tại M tạo với nhau một góc 60. a) Tính độ dài cung lớn AB theo R.

b) Tìm diện tích hình giới hạn bởi hai tiếp tuyến và cung nhỏ AB.

18.2. Cho đường tròn (O;R).

a) Tính góc AOB nếu biết độ dài cung nhỏ AB bằng 5 6

R

;

b) Xác định điểm C trên cung lớn AB sao cho khi kẻ CHAB tại thì AHCH; c) Tính độ dài các cung AC, BC;

d) Tính chu vi, diện tích ABC.

18.3. Lấy bốn điểm A, B, C, D theo thứ tự trên đường tròn (O) sao cho sđAB60, sđBC90; sđCD120.

a) Tứ giác ABCD là hình gì?

b) Tính độ dài đường tròn (O). Biết diện tích tứ giác ABCD bằng 100 m2.

18.4. Cho tam giác ABC đều cạnh a. Lấy A; B; C làm tâm dựng ba đường tròn với cùng bán kính là a. Hãy tính diện tích phần chung của cả 3 đường tròn.

18.5. Cho hình vuông ABCD có cạnh là 3 cm. Tính diện tích phần chung của bốn hình tròn có tâm lần lượt là các điểm A, B, C, D và có cùng bán kính 3 cm.

18.6. Bên trong một hình chữ nhật kích thước 10 20 có 151 điểm. Chứng minh rằng tồn tại bốn trong các điểm đó nằm hoàn toàn trong một đường tròn có bán kính 1,5.

18.7. Trong hình vuông cạnh là l, người ta đặt một số đường tròn mà tổng độ dài của chúng là 2020. Chứng minh rằng bao giờ cũng tìm được một đường thẳng cắt ít nhất 632 trong các đường tròn nói trên.

(5)

18.8. Cho ABCD là hình chữ nhật với AB = 10 cm.

Vẽ đường tròn (O), (O’) với đường kính AB và CD. Gọi P và Q là giao điểm của (O), (O’). Biết rằng đường tròn đường kính PQ tiếp xúc với AB và CD. Tính diện tích phần chung của hai đường tròn (O), (O’).

18.9. Cho hình thoi ABCD có cạnh AB = 5 cm và đường chéo AC = 8 cm. Đường tròn tâm A bán kính R = 5 cm tiếp xúc với đường tròn tâm C tại M thuộc đoạn AC. Đường tròn này cắt CB tại E và cắt CD tại F. Tính tỉ số độ dài của cung BD và cung EF.

18.10. Ba đường tròn (O;R),(O ;R ),(O ;R )1 1 2 2 với RR1R2, tiếp xúc ngoài với nhau từng đôi một, đồng thời tiếp xúc với một đường thẳng. Gọi S S S, ,1 2 lần lượt là diện tích của hình tròn

1 1 2 2

(O;R),(O ;R ),(O ;R ). Chứng minh rằng:

4 4 4

1 2

1 1 1

SSS

(Thi Học sinh giỏi lớp 9 tỉnh Hà Tĩnh năm học 2007 - 2008)

18.11. Cho nửa đường tròn (O) đường kính AB, Gọi Ax, By là các tiếp tuyến tại A và B của (O), Tiếp tuyến tại điểm M tùy ý của (O) cắt Ax và By lần lượt tại C và D.

a) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp OCD.

b) Cho AB8cm. Tìm vị trí của C để chu vi tứ giác ABDC bằng 28cm, khi đó tính diện tích của phần tứ giác nằm ngoài (O).

(Thi Học sinh giỏi lớp 9, tỉnh Bình Thuận năm học 2008-2009)

18.12. Cho đường tròn tâm O, cung AB bằng 120. Các tiếp tuyến của đường tròn tại A và tại B cắt nhau ở C. Gọi (I) là đường tròn tiếp xúc với các đoạn thẳng CA, CB và cung AB nói trên. So sánh độ dài của đường tròn (I) với độ dài cung AB của đường tròn (O)

18.13. Cho đường tròn có bán kính bằng 3. Người ta tô đỏ một số cung của hình tròn, tổng độ dài các cung được tô bằng 9. Có tồn tại hay không một đường kính của đường tròn mà hai đầu không bị tô mầu?

18.14. Trong một hình tròn có bán kính 20 có thể đặt được 500 điểm sao cho khoảng cách giữa hai điểm bất kỳ lớn hơn 2 không?

(6)

18.15. Một hình vuông và một tam giác đều cùng nội tiếp trong đường tròn (O;l) sao cho một cạnh của tam giác song song với một cạnh của hình vuông. Tính diện tích phần chung của tam giác và hình vuông.

18.16. Đường tròn (O;r) nội tiếp tam giác ABC. Qua O kẻ đường thẳng cắt hai cạnh AC và BC lần lượt tại M và N. Chứng minh rằng: SCMN 2r2.

18.17. Đường tròn (O;r) nội tiếp tam giác ABC tiếp xúc với AB, BC, CA lần lượt tại D, E, F. Đặt AD

= x, BE = y, CF = z. Chứng minh rằng:

a) SABCxyz x

 y z

b) 3

 

ABC 3

Sxyyzzx

18.18. Cho tứ giác ABCD vừa nội tiếp vừa ngoại tiếp được trong các đường tròn.

Chứng minh rằng: SABCDAB BC CD DA. . . .

HƯỚNG DẪN GIẢI - ĐÁP SỐ 18.1.

a) Tứ giác OAMB có AMB60 ; A B 90 nên:

360 90 90 60 120

AOB         

 số đo cung nhỏ AB là 120.

 số đo cung lớn AB là 360 120 240. Độ dài cung lớn AB là 240 4

180 3

R R

 

 

b) Ta có 1

2 60

MOAMOBAOB 

. tan . 3

MA OA MOA R

  

 Diện tích tứ giác MAOB là:

1 2

2. 2. . 3

MAOB MAO 2

SSMA AOR

Diện tích hình quạt OAB là:

2 2

120

360 3

q

R R

S  

 

Vậy diện tích giới hạn bởi hai tiếp tuyến và cung nhỏ AB là:

2 3

MAOB q 3

SSSR   

 

18.2.

(7)

a) Đặt số đo AOB  n

sđ 5

150 150

180 6

Rn R

AB n   n AOB

          

b) CHABAHCH suy ra CHA vuông cân tại H 45

BAC  sđBC 90

c) sđAC360 150 90 sđAC120 - Độ dài cung AC là 120 2

180 3

AC

R R

 

 

ℓ ;

- Độ dài cung BC là 90

180 2

BC

R R

 

 

ℓ ;

d) Kẻ 1

2 75

OKAHBOKAOB  .sin 75 0,966. 1,932

BK OB R AB R

     

- Ta có sđAC 120  ACR 3 - Ta có CHAC.sin 45 1, 225.R

Do vậy diện tích ABC là 1 2 . 2,367 S  2AB CHRBC90 BCR 2

Suy ra chu vi ABCABBCCA4,538R 18.3.

a) ABCD là hình thang cân.

b) Gọi R là bán kính của (O), EF là đường cao đi qua O của hình thang.

Ta có:

 

2.100 200

3 1 EF AB CD R

 

  (1)

3 1

2

EFOEOFR  (2)

Từ (1) và (2) suy ra R 3 120 10

3 1

Độ dài đường tròn bằng 20

3 1

(m).

18.4. Diện tích tam giác đều ABC là 1 2 3 4 Sa Diện tích của hình quạt của đường tròn bán kính a và có góc ở tâm 60 là:

(8)

2

2 6

S a

Diện tích của hình viên phân tạo bởi một cạnh ABC và cung nhỏ căng bởi cạnh ấy

là: 2

 

3 2 1

2 3 3 12 a S S S

 

  

Vậy diện tích chung của 3 đường tròn là:

 

2

1 3 3 3

2 SSSa  

18.5. Gọi a là diện tích của mỗi miền

1, 2, 3, 4

a a a a đã được đánh dấu trên hình 1.

Tương tự, b là diện tích của mỗi miền

1, , ,2 3 4

b b b b và c là diện tích của miền c (miền cần tìm diện tích).

Gọi E là giao điểm giữa cung nhỏ AC của đường tròn (D;3cm)và cung nhỏ BD của đường tròn (C;3cm).

Gọi SC ED. là diện tích hình quạt được giới hạn bởi hai bán kính CE, CD và cung nhỏ ED của (C;3cm); SED là diện tích hình viên phân được giới hạn bởi dây cung ED và cung nhỏ ED của (C;3cm);

SD EA. là diện tích hình quạt được giới hạn bởi hai bán kính DE, DA và cung nhỏ EA của

(D;3cm).

Dễ thấy CDE là tam giác đều cạnh 3 cm nên

2 3 9 3

4 4

CDE

Sa  (cm2)

Lại có: . 9 9 3 6 9 3

6 4 4

ED C ED CDE

S S S  

     (cm2)

.

9 6 9 3 9 3 3

12 4 4

D EA ED

a b S S     

       (cm2)

(9)

Vậy 4

 

9 4 9 3 3 9 9 3 3

ABCD 4

cSa b       

  (cm2)

18.6. Chia hình chữ nhật 10 20 thành 50 hình vuông cạnh là 2 (như hình vẽ). Tồn tại một hình vuông chứa bốn điểm. Đường tròn có tâm là tâm hình vuông này, bán kính 1,5 chứa hình vuông này. Suy ra điều phải chứng minh.

18.7. Kẻ các đường kính của các đường tròn song song với cạnh AB của hình vuông rồi chiếu các đường kính đó lên cạnh AB. Các hình chiếu đều nằm trọn trong AB.

Tổng các đường kính là 2020

 nên tổng các hình chiếu là:

2020 2020

631 631.AB

(vì AB1)

Mà mỗi đường kính  AB nên tồn tại ít nhất 632 đường tròn.

Tổng các hình chiếu này 2020

631.AB

nên tồn tại một điểm của AB thuộc ít nhất 632 hình chiếu.

Đường thẳng vuông góc với AB tại điểm đó là đường thẳng phải tìm.

18.8. Ta có (O) và (O’) cắt nhau tại P và Q nên OO'PQ. Mặt khác OPOQO P' O Q' nên OPO Q' là hình vuông.

Do đó 1 5 2

' 2 5 2 5 2 , '

2 2

OOOPcmPQcm OHOOcm. Diện tích hình quạt OPQ là:

2 2

.5 .90 25

360 360 4

q

S R n  cm2. Diện tích OPQ là:

1 1 5 2 25

. .5 2.

2 2 2 2

SPQ OH   cm2. Diện tích hình viên phân PmQ là:

 

25 2

25 25

4 2 4

vp q

S S S  

      (cm2)

Vậy diện tích phần chung của hai đường tròn (O), (O’) là:

   

25 2 25 2

2. 2.

4 2

S Svp    

   (cm2).

(10)

18.9. ABCD là hình thoi  A C Đặt AC n ta có AMAB5cm.

Độ dài cung BD là .5.

BD 180

n

 ℓ

Độ dài cung EF là .3.

EF 180

n

 ℓ

Suy ra tỉ số độ dài cung BDEF là 5 3

BD EF

ℓ  ℓ

18.10. Từ công thức tính diện tích hình tròn, ta thấy hệ thức cần chứng minh tương đương với:

1 2

1 1 1

RRR

1 2

1 2

R R R R R

  

Kẻ OKO B O N2 , 1O B OH2 , O A1 .

Ta có các tứ giác O NKH KHAB1 , là các hình chữ nhật và ba điểm H, O, K thẳng hàng

Do đó O N1HKOHOK (1)

Mặt khác OH2OO12O H1 2

R1R

 

2R1R

2

Suy ra OH 2 RR1(2)

Tương tự, ta có: OK 2 RR2 (3),O N1 2 R R1 2 (4) Từ (1), (2), (3), (4), suy ra: R

R1 R2

R R1 2

18.11.

a) OCD vuông tại O (OC và OD là phân giác của hai góc kề bù) I là trung điểm của CD thì IO = IC = ID và IOAB tại O nên AB là tiếp tuyến của đường tròn ngoại tiếp OCD.

b) Đặt ACx(cm) và BDy(cm)

 

2 28 10

CABDCABACBD    x y Mặt khác OM2MC MD. xy16

Giải hệ 10

16 x y xy

  

 

 ta được 2

8 x y

 

 

 hoặc 8

2 x y

 

 

(11)

Vậy C cách A một đoạn AC 2cmBD8cm hoặc AC8cmBD2cm. Cả hai trường hợp trên hình thang vuông ABCD có cùng diện tích: S140 (cm2).

Diện tích nửa hình tròn (O): S28(cm2)

Vậy phần diện tích tứ giác ABCD nằm ngoài đường tròn:

2 1 2 40 8 (cm ) SSS   

18.12. Gọi R, r theo thứ tự là bán kính của đường tròn (O), (I).

Gọi tiếp điểm của đường tròn (I) với cung AB và với cạnh CA theo thứ tự là M và H.

OAC vuông tại A, AOC60 nên OC 2OA2R và 2

CMOCOMR R R (1)

IHC vuông tại H, HIC60 nên IC2IH 2r Do đó MCMIIC r 2r3r (2)

Từ (1) và (2) suy ra 3 rR

Độ dài cung AB của (O) bằng 2 3

R

Độ dài đường tròn (I) bằng 2

2 3

rR

 

Vậy độ dài đường tròn (I) bằng độ dài cung AB của đường tròn (O).

18.13. Ta tô xanh các cung đối xứng với các cung đỏ qua tâm O.

Như vậy tổng độ dài các cung được tô màu là 9.2 18 . Chu vi của hình tròn là 2 .3 6 18.

Vậy tồn tại ít ra là một điểm của đường tròn không bị tô mầu. Điểm đối xứng với nó qua tâm O cũng không được tô mầu. Đó là hai đầu đường kính phải tìm.

18.14. Giả sử đặt được 500 điểm trong đường tròn có bán kính 20 sao cho khoảng cách giữa hai điểm đều lớn hơn 2.

Vẽ 500 đường tròn có bán kính bằng 1 có tâm là các điểm đã cho. Vì khoảng cách giữa hai tâm lớn hơn tổng của hai bán kính nên các hình tròn này nằm ngoài nhau và nằm trong hình tròn có bán kính 20 1 21.

Tổng diện tích của 500 hình tròn bán kính 1 phải nhỏ hơn diện tích của hình tròn có bán kính 21 nên 500. .1 2.212 hay 500. 441., vô lý.

(12)

Vậy không thể đặt 500 điểm thỏa mãn đề bài.

18.15. Ta kí hiệu ABC là tam giác đều và PQRL là hình vuông nội tiếp trong đường tròn (O;1) như hình vẽ. Đặt diện tích phần chung của tam giác đều và hình vuông là S.

Do đó SSABC 2.SAKFSMNB(*)

ABC là tam giác đều và PQRL là hình vuông nội tiếp trong đường tròn (O;1),

nên ta có:

3 2

3; 2

AC RQ AF 2

   

Ta có 3 2

.tan 60 . 3

KF AF 2

  

3 2

2 3 5 2 6

 

1 1

. . . . 3

2 2 4 8

SAKF AF KF

 

   

2 2 1

1 2 2

BHOB OH    

Ta có 2 1 1 2 1

. tan 30 .

2 3 6

MH BH  

   

   

2. 2 1 3 2 2 3

1 1 2 1

. . .

2 2 6 2 6

SBMN MN BH

  

   

Mà 3 3

ABC 4

S  . Thay các giá trị trên vào (*), ta được: 9 2 2 6 6 3 S  6 

18.16. Ta có 1

 

CMN CMO CNO 2

SSSCMCN r

Áp dụng bất đẳng thức Cô-si, ta có:

2 . 2 2. CMN

CMCNCM CNS

Do đó: SCMN  2.SCMN.r

2 2 2

2. . 2

CMN CMN CMN

S S r S r

   

18.17.

a) Vì 2pABBCCA     x y y z z x

 

2 x y z

   nên p  x y z

Mặt khác aBCBEEC y z nên p a x Tương tự p - b = y, p - c = z

(13)

Áp dụng công thức Hê-rông, ta có:

   

SABCp p ap bp c

 

xyz x y z

  

b) 3

 

ABC 3

Sxyyzzx 3.SABC xy yz zx

    (*)

Từ câu a, nên

 

* 3xyz x

 y z

 

xyyzzx

2

Đặt: xya yz, b zx, c. Bất đẳng thức trên có dạng:

   

2

  

2

 

2

2

3 abbccaa b cabb c  ca 0

Bất đẳng thức cuối cùng, nên bất đẳng thức đầu đã được chứng minh. Dấu bằng xảy ra khi ABC là tam giác đều.

18.18. Giả sử đường tròn (I;r) nội tiếp tứ giác ABCD, tiếp xúc với AB, BC, CD, DA lần lượt tại M, N, P, Q.

Đặt xAMAQ y, BMBN, ,

zCNCP tDPDQ Do tứ giác ABCD nội tiếp nên:

BADBCD180

Từ đó suy ra BADNIPIAMNIC

 IAM AM IM

CIN IN CN

  

. .

AM CN IM IN

  hay xzr2

Tương tự ta có: ytr2

Ta có: AB BC CD DA. . .

xy



yz



zt



tx

Khai triển vế phải, và chú ý: xzytr2 Ta được:

 

2 2 2 2 2

. . . 2 2 2 2 2 2

AB BC CD DAr xyz  t xyxzxtyzytzt

   

2 2

2 2

r x y z t rp SABCD

     

(p   x y z t là nửa chu vi của tứ giác ABCD).

Từ đó suy ra SABCDAB BC CD DA. . .

(14)

Tài liệu tham khảo

Tài liệu liên quan

Từ một điểm bất kì trên đường tròn, tả kẻ đoạn thẳng nối điểm đó với tâm ta được bán kính của hình tròn?. Ở hình minh họa trên ta

D Bài tập1: Hãy vẽ đường thẳng AB đi qua điểm E và vuông góc với đường thẳng CD trong mỗi trường hợp sau: a b c... và điểm E trên cạnh

- Trường hợp hai tâm thuộc cùng một nửa mặt phẳng bờ chứa dây chung. Trên đường tròn nhỏ lấy một điểm A cố định và một điểm M di động. Qua A vẽ dây BC của đường

Mặt bên SAB là tam giác vuông tại S và nằm trong mặt phẳng vuông góc với đáy, hình chiếu vuông góc của S trên đường thẳng AB là điểm H thuộc đoạn AB sao cho BH 2AH

Tính diện tích hình giới hạn bởi đường tròn (O) với AB; AC. Lấy M thuộc đoạn AB. Vẽ dây CD vuông góc với AB tại M. b) Độ dài cung CAD và diện tích hình quạt tròn giới

Hình tròn là hình gồm các điểm nằm trên đường tròn và các điểm nằm bên trong đường tròn đó. Đoạn thẳng OA là bán kính của hình tròn. *) Đường kính.. - Đoạn thẳng MN nối

Kể tên năm cặp đường thẳng vuông góc và bốn cặp đường thẳng song song trong

Cho hình chóp S.ABCD có đáy là vuông cạnh a, hình chiếu vuông góc của S lên mặt phẳng (ABCD) trùng với trung điểm của cạnh AD, cạnh bên SB hợp với đáy một góc 60