• Không có kết quả nào được tìm thấy

Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán - Thư viện tải tài liệu ôn thi THPT Quốc Gia

N/A
N/A
Protected

Academic year: 2022

Chia sẻ "Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán - Thư viện tải tài liệu ôn thi THPT Quốc Gia"

Copied!
26
0
0

Loading.... (view fulltext now)

Văn bản

(1)

VẬN DỤNG CAO TRONG ĐỀ THI THPT QUỐC GIA Đề thi gồm 40 câu trắc nghiệm

Thời gian làm bài 180 phút Good Luck!

Câu 1: Cho tam giác ABC vuông tại A. Gọi  là góc giữa hai đường trung tuyến BD và CK.

Giá trị nhỏ nhất của cos bằng?

A. 4

5 B. 5

4 C. 4

3 D. 3

4

Câu 2: Cho hàm số yf x

 

có đồ thị như hënh vẽ. Hỏi có tất cả bao nhiêu giá trị m nguyên để phương trënh sau có 8 nghiệm phân biệt: m4 m16 f x

 

4 f x

 

0

A. 3 B. 2 C. 4 D. 0

Câu 3: Cho hàm số 2 sin2 2 cos2 3 sin 2

6 2

y x    xx a (với là tham số). Gọi m M,

lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số trên đoạn ;2 . 6 3

 

 

  Có bao nhiêu giá trị nguyên của a để 2 321

mM 4 ?

A. 3. B. 4. C. 6. D. 7.

Câu 4: Cho dãy số

 

un như sau: 2 4

n 1 u n

n n

   , n 1, 2,... Tính giới hạn của tổng

1 2

lim ... n

x u u u

    .

(2)

A. 1

4 B. 1. C. 1

2 D. 1

3 Câu 5: Cho hàm số f x

 

ax4

2a b 1

x28a4b

   

max;0 f x f 3

   . Giá trị lớn của hàm số f x

 

trên đoạn 1; 3

2

 

 

  là?

A. 4 B. 5 C. 4 25a D. 5 25a

Câu 6: Cho tứ diện vuông O.ABC, gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp và nội tiếp của tứ diện. Biết rằng R32r

1 3

2OC 3OA2 6OB2 10. Tính VOABC?

A. 2

3 B. 4

3 C. 5

3 D. 1

3 Câu 7: Cho 4 số thực a b c d, , , sao cho c d 0 đồng thời thỏa mãn

   

 

2 2

4 2 2

log 1 1 log

2 .2 .2c d c d ln 2 4 4 5 16

a b a b

c d cd c d

     



       

Gọi M và m lần lượt là GTNN và GTLN của biểu thức P

a c

 

2  b d

2 . Tính giá trị của S M n  ?

A. 6 2 B. 8 2 C. 10 2 D. 12 2

Câu 8: Gọi

a b;

là tập hợp các giá trị của m để phương trënh 4 1 2 1 1

x x

x x m

 

 

 . Với

giá trị nào của m thì bất phương trënh luôn đúng?

A. m3 3 B. m2 5 C. m5 D. m4

Câu 9: Cho tam giác ABC đều cạnh a ,trên đường thẳng d vuông góc với mặt phẳng

ABC

tại A lấy điểm M bất kỳ khác A . Gọi H là trực tâm tam giác MBC , biết rằng đường thẳng

 

 vuông góc với mặt phẳng MBC tại H luôn cắt đường thẳng dtại N Tìm giá trị nhỏ nhất của diện tích toàn phần tứ diện MNBC.

A. 2

2 2 5

2

a

B. 2

2 5 2

2

a

C. 2

2 5

2 a

D. 2

5 2

2 a

Câu 10: Cho ba số thực dương a,b,c thoả mãn

1



1



1 1

15 abc

a b c

 

    

 . Gọi M,N lần lượt

là giá trị nhỏ nhất và giá trị lớn nhất của P ab bc ca   . Tính giá trị biểu thức: Q MN

A. 1. B. 41. C. 15. D. 65.

Câu 11: Cho hàm số f x

 

f f x

x

1011

 

khi khi xx 20182018

 

    . Tính giá trị f

 

1 f

2018

.

A. 1999 B. 2009 C. 4018 D. 4036

Câu 12: Một chiếc đồng hồ cát có thiết diện qua trục là 2 parapol đối xứng qua mặt nằm ngang. Khi để thẳng đứng và cát không chảy thë nó như hënh vẽ ( phần màu xanh là cát),

(3)

và mực cát của parapol ở trên là 1

5 chiều cao của parapol ở trên. Khi lật ngược đồng hồ cát thë lưu lượng cát chảy từ trên xuống dưới không đổi là 3cm3/phút. Khi chiều cao ở trên là 6cm thì bề mặt trên tạo thành 1 đường tròn có diện tích 9cm2. Biết sau 900s thì cát không còn chảy nữa. Hỏi khi lượng cát chảy xuống dưới bằng chiều cao của parapol thì thể tích cát của phần parapol ở trên là bao nhiêu (coi lượng cát đang chảy không đáng kể).

A. 14 B. 13,05 C. 12,75 D. 13,6

Câu 13: Tìm số hạng tổng quát của dãy số

 

un biết 1

1

2 1

3 1

3

n n

n

u u u

u

  

  

 

A. tan

1

8 6

un   n 

  B. tan

1

3 6

un   n 

 

C. tan

1

2 3

un   n  D. tan

1

4 7

un   n 

Câu 14: Cho hai hàm số f x

 

g x

 

có đạo hàm liên tục trên

 

0; 2 , thỏa mãn

   

' 0 . ' 2 0

f f  và g x f x

   

. ' x x

2

ex. Tính tích phân 2

   

0

. ' d . I

f x g x x

A. I 4. B. I4. C. I e 2. D. I  2 e.

Câu 15: Cho hàm số f x

 

xác định và liên tục trên

 

0;1 , thỏa mãn f x'

 

f' 1

x

với mọi x

 

0;1 . Biết rằng f

 

0 1, 1f

 

41. Tính tích phân 1

 

0

d . I

f x x

A. I 41. B. I21. C. I41. D. I 42.

Câu 16: Với n là số nguyên dương và x0 , xét khai triển Newton x8 x3 12 17 n x x

    

 

  . Hỏi

có bao nhiêu số n2018 sao cho khai triển của biểu thức trên có số hạng tự do là 0?

(4)

A. 1009 B. 403 C. 1615 D. 625

Câu 17: Có bao nhiêu số nguyên dương m trong đoạn

2018 ; 2018

sao cho bất phương trënh sau đúng với mọi x

1 ;100

:

10x

mlog10x 101110logx.

A. 2018 B. 4026 C. 2013 D. 4036

Câu 18: Một số tự nhiên được gọi là số thú vị nếu số này có 8 chữ số đôi một khác nhau được lập thành tự tập

1; 2;...;8

và số đó chia hết cho 1111. Hỏi có bao nhiêu số tự nhiên thú vị như thế?

A. 384 B. 385 C. 386 D. 387

Câu 19: Cho hàm số x3ax2b ,gọi M là giá trị lớn nhất của hàm số trên đoạn

3; 2

.

Khi M đạt giá trị nhỏ nhất thì Tloga1 b có giá trị là ?

A. 0 B. 4026 C. 2 D. 1

2

Câu 20 : Cho hình hộp ABCD A B C D. ' ' ' ' có cạnh AB a và diện tích tứ giác A B CD1 1 là2a2 Mặt phẳngA B CD1 1 tạo với mặt phẳng đáy 1 góc600 . Khoảng cách giữa hai đường thẳng

AA1CD là P. Khi P max , tìm thể tích của khối hộp biết hình chiếu của đỉnh A1 thuộc miền giữa hai đường thẳng AB và CD

A. 4 3a3 B. 6 7a3 C. 2 7a3 D. 3 7a3

Câu 21: Có bao nhiêu giá trị nguyên của tham số m để phương trënh:

  

3

3 3

sinx 2 cos 2 x 2 2 cos x m 1 2 cos x m  2 3 2 cos x m 2 Có đúng một nghiệm thuộc 2

0; 3

 

 ?

A. 1. B. 2. C. 3. D. 4.

Câu 22: Cho tam giác ABCAB3, AC 4. Phân giác trong AD của góc BAC cắt trung tuyến BM tại I. Tính tỉ số AD

AI . A. 13

8 B. 11

6 C. 10

7 D. 10

5 Câu 23: Cho bất phương trënh sau

1 3x

21 x122 

1 x2

21 31x2 m.

Biết rằng với m  

;a b a b

, 0

thì bất phương trënh trên luôn đúng với mọi x. Khi đó tổng S a b  có giá trị bằng bao nhiêu?

A. 301 B. 302 C. 304 D. 305

(5)

Câu 24: Xét các số thực a b c, , sao cho phương trënh ax2bx c 0 có hai nghiệm thuộc

 

0;1 . Giá trị lớn nhất của biểu thức

  

2

a b a b T a a b c

 

   là A. Tmax 3. B. max 3.

T  2 C. max 35.

T  8 D. max 8 T 3

Câu 25: Gọi A là tập hợp tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A, tính xác suất để số tự nhiên được chọn chia hết cho 45.

A. 53

2268 B. 54

2267 C. 56

2263 D. 1

41

Câu 26: Cho các số thực x,y thỏa mãn log22xlog22ylog22xy6log2xy 4 0. Gọi M,m lần lượt là max và min của biểu thức log32 8

xy

P x

y . Tính M.n?

A. 15

23 B. 14

23 C. 16

23 D. 17

23

Câu 27: Cho 2 số thực x1,y0 thỏa mãn điều kiện max

2 1 ; 2 1

 

x y2

22

x x y

x y

    

 . Hỏi biểu thức P3

x1

 

x22y1

có tất cả bao nhiêu ước số nguyên dương?

A. 5 B. 6 C. 7 D. 8

Câu 28: Cho các số a a a a a1, , , ,2 3 4 5 0 lập thành cấp số cộng với công sai d và

1, , , ,2 3 4 5 0

b b b b b  lập thành cấp số nhân với công bội q . Biết rằng a1b1a5b5 . Hỏi có bao nhiêu khẳng định luôn đúng trong các khẳng định sau?

i) a2b2 ii) a3b3 iii) a4b4 iv) d q

A. 1 B. 2 C. 3 D. 4

Câu 29: Cho hai hình cầu đồng tâm O

0,0,0

, bán kính R1 2,R2  10. Tứ diện ABCD A B, 

O R, 1

; ,C D

O R, 2

. Tìm giá trị lớn nhất của thể tích tứ diện ABCD.

A. 6 3 B. 6 2 C. 4 2 D. 4 3

Câu 30: Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng 1, các mặt bên là các tam giác có góc ở đỉnh S bằng 450. Cho A’ là trung điểm SA, C’ thuộc cạnh SC sao cho 3

2 SC SC . Mặt phẳng (P) đi qua A’, C’ cắt các cạnh SB, SD lần lượt tại B’, D’. Số nào gần với giá trị nhỏ nhất của chu vi tứ giác A’B’C’D’ .

A. 1.79 B. 3.3 C. 2.05 D. 1.3

Câu 31: Cho hàm số y ax3bx2cx d có đồ thị

 

C . Biết rằng

 

C cắt trục hoành tại 3 điểm phân biệt có hoành độ x1x2x3 0 và trung điểm nối 2 điểm cực trị của

 

C có hoành độ 0 1

x 3. Biết rằng

3x14x2 5x3

2 44

x x1 2x x2 3x x3 1

. Hãy tính tổng

2 3

1 2 3

S x xx ?

(6)

A. 137

216 B. 45

157 C. 133

216 D. 1

Câu 32: Cho các Parabol

 

1 :

 

1 2 ,

 

2 :

 

2 4

0

P y f x  4xx P y g x axax b a  có các đỉnh lần lượt là I I1, 2. Gọi A B, là giao điểm của

 

P1Ox. Biết rằng 4 điểm A B I I, , ,1 2 tạo thành tứ giác lồi có diện tích bằng 10.Tính diện tích Scủa tam giác IABvới Ilà đỉnh của Parabol

 

P y h x: 

 

f x

   

g x .

A. S4 B. S6 C. S7 D. S9

Câu 33: Cho hàm số bậc ba f x

 

g x

 

f mx

2nx p m n p

 

, ,

có đồ thị như hënh dưới, trong đó đường nét liền là đồ thị hàm f x

 

, đồ thị hàm nét đứt là đồ thị hàm g x

 

,

đường 1

x 2 là trục đối xứng hàm g x

 

.

Giá trị của biểu thức P

n m m p p





2n

bằng bao nhiêu?

A. 6 B. 24 C. 12 D. 16

Câu 34: Có bao nhiêu số nguyên m 

2018; 2018

để phương trënh 2 1 8 3 2 2

x   xm có đúng 2 nghiệm thực phân biệt?

A. 2013 B. 2012 C. 4024 D. 2014

Câu 35: Với x 1 ta có khai triển sau:

(7)

     

2 2018

2 2018 1 2 3 2018

0 1 2 2018 2 3 2018

2 2

... ...

1 1 1 1 1

b b

b b

x x

a a x a x a x

x x x x x

             

      

 

Tính tổng 2018

1 k k

S b

?

A. 22017 1 20181009.

S 2C B. 22018 1 10092018.

S 2C C. S22018C20181009. D. S220182C20181009. Câu 36: Có bao nhiêu hàm số yf x

 

liên tục trên

 

0;1 thỏa mãn điều kiện

           

1 2018 1 2019 1 2020

0 f x dx0 f x dx0 f x dx

  

A. 1 B. 2 C. 3 D. 4

Câu 37: Cho các hàm số f x

 

, g x

 

liên tục trên

 

0;1 , thỏa m f x.

 

n f. 1

x

g x

 

với m n, là số thực khác 0 và 1

 

1

 

0 0

d d 1.

f x xg x x

 

Tính m n .

A. m n 0. B. 1.

m n  2 C. m n 1. D. m n 2.

Câu 38: Có bao nhiêu số tự nhiên có 2018 chữ số sao cho trong mỗi số tổng các chữ số bằng 5?

A. 1 4 C20171 2

C20172A22017

 

C20173A20162C20162

C20174

B. 1 4 C20171 3

C20172A20172

 

C32017A22016C22016

C42017

C. 1 4 C20171 2

C20172A20172

 

4 C32017A20162C22016

C20174

D.1 4 C20171 2

C20172A20172

 

4 C20173A20162C20162

2C20174

Câu 39: Cho 2 số thực x y, 1 thỏa mãn điều kiện:

 

2 2 2

1 log 3 2 log 3 3 log 3 9log 2 2 x

y y xy

    .

Đặt P x2xy y2. Hỏi mệnh đề nào sau đây đúng?

A. P

11;12

B. P

12;13

C. P

10;11

D. minP10

Câu 40: Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho

AMN

luôn vuông góc với mặt phẳng

BCD

. Gọi V1, V2 lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của thể tích khối tứ diện ABMN. Tính

1 2

V V . A. 17 2

216 B. 17 2

72 C. 17 2

144 D. 2

12

(8)

LỜI GIẢI CHI TIẾT ĐỀ VẬN DỤNG CAO LỜI GIẢI ĐƯỢC THỰC HIỆN BỞI NHÓM CHINH PHỤC OLYMPIC TOÁN Câu 1.

Ta có . 21

  

.21

cos . .

BA BC CA CB BD CK

BD CK BD CK

 

  

 

2

. )

. . . .

4. . 4. .

BA CA BC CA BA BC BA CA BA CB BC CA BC CB

BD CK BD CK

  

  

 

2

2 2

4. . 2. .

BC BC

BD CK BD CK

  

Vì tam giác ABC vuông tại A nên BA CA. 0

Mặt khác 2. . 2 2 2 2 2 2 2 2

2 4 2 4

AM GM AB BC AC AC BC AB

BDCK BDCK         

   

2 2 2 2

2 2 5

4 4 4

AB AC BC BC

BCBC

     cos 22 4

5 5

4 BC

   BC

Dấu “=” xảy ra khi và chỉ khi BD = CK hay ABC vuông cân tại A88 Câu 2.

Đặt tf x t

 

, 0

Dựa vào đồ thị ta thấy, với 0 t 1 cho ta 4 giá trị của x.

Phương trënh trở thành: m4 m16t 4t m 4 m16t 16t2 Đặt um16 ,t u0, ta có hệ phương trënh:

 

 

2 2

4 16 1

16 2

m u t

m t u

  



 



Từ (1) và (2) suy ra:

u4t



4 u 4t

  0 u 4t do

4 u 4t0

. Khi đó:

  

4tm16t 16t2 16t m * t0 Xét hàm số f t

 

16t216t trên

0;

Để phương trënh đã cho có 8 nghiệm phân biệt thë phương trình (*) phải có 2 nghiệm t t1; 2 thỏa mãn: 0      t1 t2 1 4 m 0. Do m là số nguyên nên m   

3; 2; 1

.

Câu 3.

Ta có 2 cos2 3 sin cos 3 sin 1 1 2 sin .

2 6

x x x x x

         

   

   

(9)

Do đó 2 sin2 2 sin 2 1.

6 6

y x xa  Đặt sin , t x6

  vì ;2

 

0;1 x6 3  t Hàm số trở thành 2 2 2 2 1 2 1 2 2 1.

2 2

yt  t a   t  a

Vì 0 1 1 1 1 0 1 2 1

2 2 2 2 4

t tt

            . Suy ra 2 1 2 1 2 2 1 2 1.

2 2 2

a   t  a  a

 

2 2

2 2 2

2

1 321 1 321

1 3 3.

21 4 2 4

m a m M a a a

M a

  

  

               

Suy ra có 7giá trị nguyên của thỏa.

Câu 4.

Ta có

1 2

2 2

2 1



2 1

21 2 1 1 2 1 1

n

n n

u n n n n n n n n n n

 

               

Ta có 1 2 ... 1 1 1 1 1 1 1 1 1 ... 2 1 2 1

2 3 3 7 7 13 13 21 1 1

u u un

n n n n

 

                   

2

2 2

1 1 1 1

2 1 2 1

n n

n n n n

  

       

1 2

2

1 1

1 1

lim ... n 2lim1 1 1 2

u u u n

n n

      

  .

Câu 6.

Để đơn giản bài toán ta đặt OA a OB b OC c ,  ,  .Ta có công thức quen thuộc để tính bán kính mặt cầu ngoại tiếp của tứ diện vuông là 1 2 2 2

R2 abc . Công việc còn lại ta sẽ đi tính bán kính mặt cầu nội tiếp tứ diện này. Gọi T là tâm mặt cầu nội tiếp tứ diện OABC, ta

có 1 1 3

( ) .

3 3

OABC TOAB TOAC TOBC TABC OAB OAC OBC ABC tp OABC

tp

V V V V V r S S S S r S r V

           S

Vậy tóm lại ta có 1 2 2 2

R2 abc và 3 OABC

tp

r V

S , do đó:

O

B

C A

T

(10)

 

2 2 2 2 2 2 2 2 2

2 2 2

2 2 2 . .1

2 2

3 3 3.

6

tp

OABC OABC

tp

a b c ab bc ca a b a c b c S a b c

R a b c

V abc

r V

S

      

 

 

  

 

3 2 2 2 3 2 2 2 3 4 4 4

2 2 2. 2 2 2 2 2 2 3 3 3

2R a b c ab bc ca a b a c b c a b c a b c a b c

r abc abc

  

 

        

  

 

3 3abc 3abc 3 3 1 abc

    .

Vậy2rR 3 1

3

. Dấu “=” xảy ra khi a b c 

Thay vào giả thiết thứ 2 ta tëm được 2 1.2.2.2 4

6 3

a b c   VOABC   . Câu 7.

Biến đổi giả thiết đầu tiên ta có

2 2

  

2 2

    

2

2

log 1ab  1 log a b ab  1 10 a b  a5  b 5 49 Giả thiết 2 tương đương

     

4 4

2 2 2

2 .2 .2c d c d ln cd 2cd4c  4d 5 162  c d c d ln c d 2 1 16 Theo bất đẳng thức AM – GM ta có 2  c d c d4 22 4 24 16

Mặt khác ln

 

c d 2

2 1

 0 VT16. Dấu “=” xảy ra khi c d  2 Ta sẽ sử dụng phương pháp hënh học cho bài này.

Xét đường tròn tâm I

 

5; 5 bán kính R7, và đường thẳng

 

 :x y  2 0. Gọi điểm

   

; , ;

A a b B c d . Ta có hình vẽ dưới đây.

(11)

Ta có P

a c

 

2 b d

2 AB min

 

max min

0; 6 2 7

2 6 2 7

AB d R

AB AB R

     

 

   



Câu 8.

Đặt 2 1 2 2 2 1

1

a x

a b

b x

  

   

  

 . Phương trënh trở thành: a2 24b 2 3 3

ba b

 Ta có:

 

4 4 4 2

4 2

3

2 2 2 2 2 2 4 27 2 3 3

. . 1

27 27

AM GM

a a a a a a a

a b b a b b b b

    

 

  

4 4 4

3 3

2 2 2 2 2 2 2 2 2 2

16 16 16

2 2 2

3 3

AM GM

b b b

b a b a b b a a b b

         

    

 

 

2 4 2

2 2 2

2 2

16b 108b 4b 3 3.2b a b

a b

   

 

Cộng lại ta được VT 3 3 VP. Dấu “=” xảy ra khi 3 2

3 3

a b   x . Vậy m3 3

Câu 9.

Gọi I là trung điểm BC ta dễ dàng chứng minh được

 

  

BC MAIMAI

 

  



Gọi O  

 

AI , ta có O là trực tâm MNIAM AN AO AI.  . MN2 AO AI. Ta dễ dàng chứng minh được O là trọng tâm tam giácABCMN a 2

O I

A C

B M

N

H

(12)

Vì 3 3

3 ; 2

a a

AOAI do tam giác ABC đều cạnh a. Rõ ràng MNAB MI; BC NI; BC nên

 

1 . . . .

tp 2

SMN AB MI BC MN AC NI BC   1

2

2a MN MI NI

   vì ABC đều cạnh a.

Ta có 2 2 2 3 2

4

MIAMAIAMa . Nên theo ta có

. 2 3. 3 2 5 AM a

MI

Tương tự ta cũng có

. 2 3. 3 2 5 AN a

NI

 . Do đó 1 2 2 3

2 5 5

tp

S a MN MNa

    

 

MN a 2nên 2

2 2 5

tp 2

S a

 . Dấu bằng xảy ra khi 2

2 AM AN  a Câu 10.

Từ giả thiết suy ra: ab bc ca a b c     13.

Áp dụng bất đẳng thức AM – GM ta có:

       

2 1

 

2

15 a 1 b 1 c 1 a 1 bc 1 a . a 1

a

         

1

2 16 1 4 3 1 0

3 5

2

3 5

2

4 4

a a a a a a a aa

              

Đặt

3 5

2 ;

3 5

2.

4 4

ki

  Chứng minh tương tự thë ta cũng thu được i b c k ;  Từ đó suy ra:

       

     

   

3 2

3 2 2

3 2

2 3 2

2

0 1

1

1 13 13 5

1 13 .

2 a k b k c k k k a b c k ab bc ca

k k a b c ab bc ca k k ab bc ca

k k

ab bc ca k k k k ab bc ca

k k

           

           

  

           

Hoàn toàn tương tự với i:

   

0 13 5.

a i b i c i    ab bc ca   2 Vậy

13 5

2 41.

13 5 2 M

Q MN N

 

    

 

 

Câu 11.

Ta có

(13)

         

           

           

           

           

           

2018 2018 11 2029 2019 10 2009

2017 2017 11 2028 2018 2009

...

2009 2009 11 2020 2010 2009

2008 2008 11 2019 2009 2009

2007 2007 11 2018 2009 2009

2006 2006 11 2017 2009 2

f f f f f

f f f f f f

f f f f f f

f f f f f f

f f f f f f

f f f f f f

     

    

    

    

    

    

         

009 ...

1 1 11 12 2009

ff f   f f

Do đó ta có f

2018

f

2018

 ... f

 

1 2009 f

 

1 f

2018

4018

Câu 12.

Gọi chiều cao 1 parapol là h. Ta có S 9 cm2  R 3. Xét thiết diện qua trục thẳng đứng thì ta thấy parapol đi qua các điểm

    

0;0 , 3;6 , 3;6

Nên 2 2 3

yx Diện tích hình tròn qua thiết diện nằm ngang là 3 2y Thể tích phần phìa dưới của đồng hồ cát là

0

3 60

2 45

h ydy h

   

 Thể tích phần cát cần tìm VC  

05h 32ydy1,8

 

cm3 Câu 13.

Ta có 1 tan

u  8 và 1

1 1 3

1 3

n n

n

u u

u

 = tan6 1 tan

6

n

n

u

u

 

 

 

1 . Đặt un tanvn khi đó

 

1 trở thành:

1

tan tan

tan 6 tan

1 tan tan 6 6

n

n n

n

v v v

v

   

       vn1vn6

1 tan 1 2 1 tan 1

8 8

uv    v   .

Từ đó ta có 1 1 . .

1

8 6 8 6

n n

v vn d  n v   n 

Hay tan

1

8 6

un   n  Câu 14.

Từ giả thiết

     

 

' 0 0 ' 0 . ' 2 0

' 2 0 f f f

f

 

  

 

(14)

Do đó từ g x f x

   

. ' x x

2

ex

   

 

   

 

2 2 2

2 0

' 2 0 0 2

0 0

' 0

x

x

g e

f g e

f

 

 



    

Tích phân từng phần ta được

   

20 2

   

0

. . ' d

If x g x  

g x f x x

       

2

 

2

 

0 0

2 . 2 0 . 0 2 xd 2 xd 4.

f g f g x x e x x x e x

  

  

 

Câu 15.

Ta có f x'

 

f' 1

x

f x

 

 f

1x

Cf

 

0  f

 

1   C C 42

  

1

42

  

1

42

f x f x f x f x

         1

   

1

0 0

1 d 42d 42

f x f x x x

    

 

1

   

1

 

1

 

0 0

' ' 1 d 1 d .

f xfx

f x x

fx x

 

2 Từ

 

1 và

 

2 , suy ra 1

 

1

 

0 0

d 1 d 21.

f x xfx x

 

Câu 16.

Ta có 8 3 2 7

5

3 7

1 1 1 1

n n

x x x n x

x x x

         

   

    nên số hạng tổng quát của khai triển trên là

5 3 10 3 5 10

k k h n h k h n k h

n n n n

T C x C x C C x   . Số hạng này là số hạng tự do khi 3n5k10h 0 3n5(2h k ).

Nếu n không chia hết cho 5 thì khai triển sẽ không chứa số hạng tự do, tức là số hạng tự do là 0. Còn khi n chia hết cho 5 thì khi 2

5 , 5

n n

hk , số hạng tự do sẽ là C Cnk nh 0, không thỏa.

Câu 17.

Biến đổi giả thiết tương đương

    

log log 1 11log log 10 log 1 11log 0

10 10

m x x x x m x x

         

 

 

 

2

10m logx 1 log x 10logx 0

     .

Do x

1 ;100

logx

0 ; 2

. Do đó ta có

 

2 10log log2

10 log 1 log 10log 0 10

log 1

x x

m x x x m

x

      

 Đặt tlogx, t

0 ; 2

, xét hàm số

 

10 2

1 f t t t

t

 

(15)

Ta có:

 

 

2 2

 

' 10 2 0 0 ;2

1

f t t t t

t

     

 . Do đó

 

0

   

2 0

 

16

ff tf   f t  3 Để 10log log2

10 log 1

x x

m x

 

 đúng với mọi x

1 ;100

thì 10 16 8

3 15

m  m Do đó 8 ;2018

m 15 

   hay có 2018 số thỏa mãn.

Câu 18.

Số cần tìm có dạng i a a a a b b b b1 2 3 4 1 2 3 4 . Ta có tổng các chữ số của số cần tìm là tổng các chữ số từ 1 đến 8 bằng 36 chia hết cho 9 nên số cần tìm chia hết cho 9. Do 9 và 1111 có ước chung lớn nhất là 1 nên theo giả thiết thì i chia hết cho 9999.

Đặt x a a a a y b b b b1 2 3 4,  1 2 3 4. Ta có i x .104 y 9999x x y  chia hết cho 9999 từ đó suy ra

x y

chia hết cho 9999.

Mặt khác 0  x y 2.9999  x y 9999. Do đó a1b1a2b2a3b3a4b4 9

Từ các chữ số 1,2,3,4,5,6,7,8 có 4 cặp

  

1;8 , 2;7 , 3;6 , 4; 5

    

nên có 8 cách chọn a1; 6 cách chọn a2; 4 cách chọn a3 và 2 cách chọn a1 tức chọn ak có luôn bk.

Vậy số các số thú vị là 8.6.4.2 384 số Câu 19.

Xét hàm số h x

 

x3ax2b

Gọi m,n lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của h x

 

trên đoạn

3; 2

.

Suy ra 4 8

9 27

m a b n x b

   

   

 hoặc 9 27

4 8

m x b n a b

   

   



 

max ;

2

4 8 9 27 4 8 9 27

2

max

max

m n m n

y m n

a b a b a b a b

y

  

 

          

Vì 4a b  8 9a b 27 0 ; 4a b  8 9a b 27 0

Vậy ymax 0. Dấu “=” xảy ra khi 7

0 36

0

m n a

m b

n

 

 

  

   

 

1 6

loga log 36 2.

T b

   

Câu 20.

Ta có AB a A B1 1a. Gọi DK là đường cao của hình hộp

(16)

DH là đường cao củaA B CD1 1 2 2 a 2 .

DH a

  a  .Khoảng cách giữa hai đường thẳng AA1 và CD bằng khoảng cách từ D1 đến

ABB A1 1

. Từ A để đường cao AQ đến

A B C D1 1 1 1

, tách hình ra ta có h1h2 là hình chiếu từ K và Q đến A B1 1 , suy ra h1h2D J x1  . Đặt khoảng cách từ Q đến

ABB A1 1

là h.

Từ góc giữa

A B CD1 1

1 1 1 1

600 1 ;DK AQ 3 . A B C D  KH 2DH a   a Ta có :

 

2

2 2 2 2

1

1 1 1 1 1

3 hhAQx aa

 

 

2

2

3

3 .

a x a

h a x a

  

 

 

 

 

2

1 1 3 2

; . 3

3

a a

d K ABB A h

x a a x a

 

  

Ta có

   

 

1 11 11

12

;

;

d D ABB A D J x h a

d K ABB A  

   

 

1 1 1 2 2 2 2

3 3

; 3 4 2

ax ax

d D ABB A

a ax x a x a

  

 

 

2 2 2

2 2

3 3 3 3 2

4 2 1 4 2 1 3 2 1 3 3

4 4 4

a a a a a

a a a a a

x x x x x x a

    

   

         

 

 

Dấu bằng “=” xảy ra 2 1 4

2

ax x a

x     V DK D J A B. 1 . 1 1  3 .4 .a a a4 3 .a3

(17)

Câu 21.

Phương trënh tương đương với

 

3 3 3 3

2 sin xsinx2 2 cos x m 2 2 cos x m  2 2 cos x m 2.

Xét hàm f t

 

2t3t với t0. Ta có f t'

 

6t2   1 0 f t

 

đồng biến.

f

sinx

f

2 cos3x m 2 ,

suy ra

3

2 3

sin 0

sin 2 cos 2

sin 2 cos 2

x x m x

x x m

 

    

  

2 3

sin x 2 cos x m 2

    vì sin 0, 0;2 x  x  3

2 3 3 2

1 cos x 2 cos x m 2 m 2 cos x cos x 1.

         

Đặt ucosx, vì 2 1

0; ;1 .

3 2

x   u   Khi đó phương trënh trở thành

3 2

2 1.

m  uu

Xét g u

 

 2u3u21, có

 

2

 

0 1;1

' 6 2 ; ' 0 2 .

1 1;1

3 2

u

g u u u g u

u

    

  

    

     

  

Lập bảng biến thiên suy ra phương trënh có 1 nghiệm khi 28 4 m 27

        m

4; 3; 2 .

Câu 22.

Theo tính chất đường phân giác ta có 3

2 3 0

2 IB AB

IB IM IMAM    

Và 3

4 3 0

4 DB AB

DB DC DCAC     Vậy ta có 2 3 0

4 3 0

IB IM DB DC

  



 



2 3 5

4 3 7

AB AM AI AB AC AD

  

 

 



4 6 10

4 3 7

AB AM AI

AB AC AD

  

 

 



Suy ra 3AC6AM7AD10AI 7AD10AI0 10 7 AD

AI  . Câu 23.

Đặt a 3 x 2 2 , ta đi chứng minh

a b 1

b x 2

  

   

  

 1

1 a 1

1

1 b 1

1 2 VP

2 b a

         

    

 

(18)

Câu 24.

Với các số thực a b c, , làm cho phương trënh ax2bx c 0 có hai nghiệm thuộc

 

0;1 .

Suy ra a0. Gọi hai nghiệm đó là x x1, 2, theo định lì Viet ta được

1 2

1. 2

x x b a x x c

a

  



 



Ta có

    

  

2 1 2 1 2

1 2 1 2

2 1 2

(2 ) 1 2

( ) 1 1

b b

a b a b

a b a b a a a x x x x

T a a b c a b c b c x x x x

a a a

  

      

        

            

1 2 1 2

1 2 12 22 1 2 12 22

1 2 1 2 1 2 1 2

2 1 2 .

1 1

x x x x x x x x x x x x

x x x x x x x x

         

  

     

Không mất tính tổng quát ta có thể giả sử 0x1x2 1,

Suy ra 122 1 2 1 2 1 2 1 2 21 1 2 12 22

2

1 1

1 x x x

x x x x x x x x x x x

x

             

 



Suy ra 1 2 12 22 1 2 21 222 1 2 122 222

1 2 1 2 1 2 1 1 2 1 2

1 1 1.

x x x x x x x x x x x x

x x x x x x x x x x x

        

  

        

Suy ra T  2 1 3. Vậy Tmax 3, dấu “=” xảy ra khi x1x2 1.

Nếu hàm số yf x( ) là hàm số lẻ trên đoạn

a a; ,

 

a0

và có giá trị lớn nhất và giá trị nhỏ nhất thì

 

 

 

 

; 0; ;

a a a a a

max f x max f x min f x

 

Câu 25.

   

2

2

2 2

2

1 1

1 a 1 1 b 1

b a

1 1 1 1

a b b a

1 1 a b 2 2 2 2 a b

2 2

a b b a ab b a

        

    

 

         

     

         

          

 

 

 

2 2 2

3 3

AM GM

2 2

2 2

3 2

AM GM

6 6 2 2

6 6

b a

3a 4 3b 4 a b 2

ab b a

6 ab a b

6 6

4 4 4 2 2 2 17 12 2

ab 16 ab 16 a b

2

 

    

 

     

 

 

   

      

   

            

   

 

(19)

Ta có n

 

 A108A79.

Gọi A là tập hợp các số a có 8 chữ số khác nhau chia hết cho 45.

Khi đó a chia hết cho 5 và 9 (tổng các chữ số chia hết cho 9 và s

Tài liệu tham khảo

Tài liệu liên quan

[r]

Tọa độ không gian luôn là phần dễ nhất, nhưng yêu cầu đối với học sinh bài này chỉ là tư duy tưởng tượng hình, việc tính toán gần như không đáng kể... Do vậy ngay cả

Khi đó giá nguyên liệu làm một chiếc bút chì như trên gần nhất với kết quả nào dưới đây?. Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm

Trong tất cả các hình chóp tứ giác đều nội tiếp mặt cầu có bán kính bằng 9, tính thể tích V của khối chóp có thể tích lớn nhất.... Khối cầu

Kỹ thuật thế biến – lấy tích phân 2 vế được áp dụng cho những bài toán mà giả thiết có dạng tổng của hai hàm số, khi đî ta sẽ lợi dụng mối liên hệ giữa các hàm theo biến số

Câu 36: Một ngày đẹp trời, trong lúc đi dạo công viên, cầm một khối cầu trong tay, một nhà khoa học yêu cái đẹp nảy ra û tưởng muốn tạo ra một khối nón nội tiếp trong một

Tính xác suất để chọn được số chia hết cho 7 và có chữ số h|ng đơn vị bằng 2... Biết rằng thể tích khối chóp

Gọi , là hai điểm cực trị của đồ thị hàm số và The linked image cannot be display ed.. The